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6 CHAPTER 1. RESUME

Cette these traite de I'existence locale de solutions d’une certaine classe de
systemes hyperboliques dans des espaces fonctionnels & poids de type Holder
et Sobolev ainsi que de l'existence de solutions polyhomogenes. Les espaces
fonctionnels utilisés, définis pour une variété a bord N au moyen d’une fonc-
tion réguliere positive = caractérisant le bord (ie. z|ON = 0), permettent des
singularités au bord.

Ce travail trouve son origine dans I’étude du comportement asympotique
a l'infini isotrope du champs de gravitation. Dans les années soixantes, Bondi
et al. [6] avec Sachs [38] et Penrose [37] ont proposé un ensemble de condi-
tions asymptotiques approprié pour la description du régime de rayonnement du
champs de gravitation. Une maniére simplifiée d’introduire ces conditions est
de supposer 'existence de coordonnées “asymptotiquement Minkowskiennes”
(z#) = (t,x,y, z) dans lesquelles la métrique de l’espace-temps g prend la forme

1 2
h;uj (t_r)97@) + hul/ (t _2T7 97 90) +
T T

Guv — Ny = ) (1.0.1)
ol 7, est la métrique de Minkowski diag(—1,1,1,1), avec u = t—r, 1,0, ¢ étant
les coordonées sphériques standard de R3. L’expansion asymptotique ci-dessus
devant étre comprise a u fixé, r tendant vers 'infini. L’existence de classes de
solutions des équations d’Einstein du vide satisfaisant les conditions précédentes
est établie dans [4,22]. Mais la question de la généralité des solutions ayant le
comportement asymptotique (0.2) reste ouverte. En fait, les résultats de [4, 18]
suggerent fortement que le cadre approprié pour décrire les champs gravitation-
nels rayonnants est celui des expansions asymptotiques polyhomogénes :

v — Nuv € Dphg - (1.0.2)

ou dans notre contexte une fonction est dite polyhomogene — f € s — si
et seulement si

oo i In/ r
[~ ZZfij(u797 50) i (1'0'3)

i=0 j=0
pour des suites n;, N;, avec n; /" 0o, ou ~ signifie “asymptotique a”, et ou les
fij sont réguliers. La suggestion que les expansions (1.0.2) sont celles décrivant
le champs de gravitation dans le régime de rayonnement vient du fait que des
données initiales génériques en un sens bien précis, telles que celles construites
dans [4, 18] sont polyhomogenes. Cela méne naturellement & se poser la question
si des données initiales polyhomogenes sont préservées par évolution pour les
équations du type équation d’onde.

Il s’avere que I’étape indispensable pour étudier ces questions est ’établissement
de théoremes d’existence locale dans des espaces de Sobolev et de Holder a poids
dans lesquels est inclus @7, théorémes qui ont leur intérét propre.

La premiere partie de la these, apres quelques résultats généraux sur les
espaces a poids considérés, traite du probléme de Cauchy, dit “hyperboloidal”,
pour ’équation d’onde scalaire linéaire ou semi-linéaire et de ’équation d’application
d’onde dans 'espace-temps de Minkowski compactifié. Nous nous intéressons
en particulier au comportement des solutions prés du morceau du bord .# T



de M qui représente l'infini isotrope futur. Les données initiales sont dans
des espaces de Sobolev a poids sur une hypersurface compacte issue de la
compactification d’un hyperboloide, et peuvent présenter des singularités au
bord, apres compactification conforme. A l’'aide d’une inégalité de type en-
ergie a poids que nous démontrons pour une certaine classe de systémes hyper-
boliques linéaires, nous établissons diverses estimées a poids pour les équations
d’onde étudiées. L’étape décisive pour obtenir les estimées consiste en une
décomposition isotrope de df en composante transverses et paralleles a #T.
L’existence locale se déduit des estimations par des arguments standards. Nous
montrons en outre, que si les données initiales sont polyhomogenes (ie. ad-
mettent une expansion asympotique a l'infini isotrope de la forme (0.1)) et
satisfont certaines conditions de compatibilités, alors la solution est aussi poly-
homogene. Les résultats précédents permettent des singularités plus générales
que celles traitées dans les approches conformes classiques, qui, en particulier,
ne peuvent permettre de traiter les cas de dimensions d’espace paires.

La deuxieme partie a pour but d’établir des résultats similaires pour les
équations d’Einstein du vide avec données initiales sur une hypersurface asymp-
totiquement hyperboloidale. Pour appliquer les techniques mises en place dans
la premiere partie, nous prenons une formulation par Friedrich du systeme con-
forme des équations d’Einstein avec un choix de jauge isotrope, combinée avec
une décomposition des équations de type Newman-Penrose dans le formalisme
de Christodoulou-Klainerman. En particulier nous avons dérivé une version
plus générale des équations de Bianchi isotropes établies par ces derniers pour
I’adapter a notre choix de jauge et en déduire des estimées a poids sur les com-
posantes isotropes du tenseur de Weyl. Nous en déduisons des estimées dans les
espaces de Sobolev a poids pour les différents champs du systeme et le théoréme
principal de cette these: existence locale de solutions du probleme de Cauchy
pour les équations d’Einstein avec données initiales dans ces espaces. Comme
précédemment, notre approche permet un comportement singulier au voisinage
du bord des données initiales, et en particulier autorise un comportement en
1/ du tenseur Q7 1WW, ott W est le tenseur de Weyl. 11 est important de noter
que ce type de comportement est associée a une obstruction géométrique de
la régularité de .# et que notre théoreme d’existence locale est en principe
compatible avec les données initiales génériques construites dans [4].



CHAPTER 1. RESUME



Chapter 2

Introduction

This thesis deals with the local existence of solutions of some hyperbolic sys-
tems in weighted and polyhomogeneous spaces. By weighted spaces we mean
Holder and Sobolev weighted spaces on a Riemannian smooth manifold M with
compact closure and nonempty boundary 0M, where the weight is provided by
powers of a positive regular function x defining M. The motivation behind
this work is as follows: In the sixties Bondi et al. [6] together with Sachs [38]
and Penrose [37], building upon the pioneering work of Trautman [40, 41], have
proposed a set of boundary conditions appropriate for the gravitational field
in the radiation regime. A somewhat simplified way of introducing the Bondi-
Penrose (BP) conditions is to assume existence of “asymptotically Minkowskian
coordinates” (z*) = (t,x,y, z) in which the space-time metric g takes the form

1 2
hp,u (t;r797()0) + h’HV (t74_27a70790) +..., (201)

Quv — Nuv =

where 7, is the Minkowski metric diag(—1,1,1,1), u stands for t—r, with r, 6, ¢
being the standard spherical coordinates on R3. The expansion above has to
hold at, say, fixed u, with r tending to infinity. Existence of classes of solutions
of the vacuum Einstein equations satisfying the asymptotic conditions (2.0.1)
follows from the work in [22] together with [3,4, 19]. As of today it remains an
open problem how general, within the class of radiating solutions of vacuum
Einstein equations, are those solutions which display the behaviour (2.0.1).
Indeed, the results in [1-4, 18] suggest strongly! that a more appropriate setup
for such gravitational fields is that of polyhomogeneous asymptotic expansions:

Guv — N € JZ{phg : (202)

In the context of expansions in terms of a radial coordinate r tending to infinity,
the space of polyhomogeneous functions is defined as the set of smooth functions
which have an asymptotic expansion of the form

oo i In/ r
FYD fii(u,0,9) ek (2.0.3)

i=0 j=0

L Cf. [34] and references therein for some further related results.
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for some sequences n;, N;, with n; /" oco. Here the symbol ~ stands for “be-
ing asymptotic to”: if the right-hand-side is truncated at some finite i, the
remainder term falls off appropriately faster. Further, the functions f;; are
supposed to be smooth, and the asymptotic expansions should be preserved
under differentiation.?

The suggestion that the expansions (2.0.2) are the ones describing the grav-
itational field in the radiation regime arises from the fact that generic, in a well
defined sense, initial data constructed in [1-4, 18] are polyhomogeneous. This
leads naturally to the question, whether polyhomogeneity of initial data is pre-
served under evolution under wave equations. In the first part of this thesis
(Chapter 3) we answer in the affirmative this question for semi-linear wave
equations, and for the wave map equation, on Minkowski space-time. We de-
velop a functional framework appropriate for the analysis of such questions.
We prove preservation of polyhomogeneity for a large class of linear symmetric
hyperbolic systems. We prove local in time existence of solutions of semi-linear
wave equations, and for the wave map equation, on Minkowski space-time,
with conormal and with polyhomogeneous initial data. We show that poly-
homogeneity is preserved under evolution when appropriate (necessary) corner
conditions are satisfied by the initial data. We note that the existing related
results [7,32,35] do not answer the questions raised here.

Our main results in Chapter 3 are the existence and polyhomogeneity
of solutions with appropriate polyhomogeneous initial data for the nonlinear
scalar wave equation, and for the wave map equation. We achieve this in a few
steps. First, we prove local existence of solutions of these equations in weighted
Sobolev spaces, ¢f. Theorems 3.5.1 and 3.6.1. The next step is to obtain esti-
mates on the time derivatives, ¢f. Theorems 3.5.4 and 3.6.4. Those estimates
are uniform in time in a neighbourhood of the initial data surface if the initial
data satisfy compatibility conditions. Somewhat surprisingly, we show that all
initial data in weighted Sobolev spaces, not necessarily satisfying the compat-
ibility conditions, evolve in such a way that the compatibility conditions will
hold on all later time slices; this is done in Corollary 3.5.5 and Theorem 3.6.4.
Finally, in Theorems 3.5.10 and 3.6.5 we prove polyhomogeneity of the solutions
with polyhomogeneous initial data; this requires a hierarchy of compatibility
conditions.

The restriction to Minkowski space-time in Theorem 3.6.5 is not necessary,
and is only made for simplicity of presentation of the results; the same remark
applies to Theorem 3.5.1. Similarly the choice of the initial data hypersurface
as the standard unit hyperboloid is not necessary.

The second part of this work is concerned with the Einstein equations. The
long term goal is to prove analogous theorems for general relativistic ”hyper-
boloidal initial data sets”; this requires, first, setting up a framework to which

2The choice of the sequences n;, N; is not arbitrary, and is dictated by the equations at
hand. For example, the analysis of 3 4+ 1 dimensional Einstein equations in [18] suggests that
consistent expansions can be obtained with n; = ¢. On the other hand, Theorem 3.6.5 below
gives actually n; = i/2 for wave-maps on 2 + 1 dimensional Minkowski space-time. We note
that the 2 + 1 dimensional wave map equation is related to the vacuum Einstein equations
with cylindrical symmetry (cf., e.g., [5,15,16]).
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the techniques developed in the first part of the thesis apply. We use a mix-
ture of the conformal Friedrich’s form of the Einstein field equations with an
appropriate null choice of gauge, together with a Newman-Penrose type decom-
position of the equations; we actually work with the Christodoulou-Klainerman
version of the Newman-Penrose formalism. We need those equations in a setting
more general than the one already considered in the literature, which forces us
to rederive the equations from scratch; this is done in Chapter 4. In Chapter 5
we apply the techniques developed in the first part of the thesis to prove esti-
mates in weighted Sobolev spaces for solutions of those equations, which leads
to a local existence theorem of space-times with “a piece of #*” to the future
of a hyperboloidal hypersurface with initial data in weighted Sobolev spaces.
This is the contents of Theorem 5.5.2, which is the main result of this work. As
before, our framework allows initial data which are singular at the boundary, in
particular initial data for which the conformally rescaled Weyl tensor has a 1/
singularity are allowed in our theorems. This is precisely the behaviour associ-
ated with a geometric obstruction to smoothness of the conformal null infinity
# [1,2]. A rough inspection shows that our existence theorem is compatible
with the generic initial data constructed in [3,4]; a precise statement would,
however involve a lengthy and tedious but otherwise straightforward analysis
of the initial data which we have not carried out. It is clear at this stage that
the methods developed in the first and second part of the thesis will lead — for
polyhomogeneous initial data — to an existence theorem of space-times with
“a piece of polyhomogeneous .#” to the future of the initial data hyperboloidal
hypersurface; such a result, however, requires a further lengthy adaptation of
the remaining methods of the first part of the thesis to the equations considered
in the second part, a task which we are planning to finish in the near future.
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Nonlinear equations on Minkowski
space-time

13



14CHAPTER 3. NONLINEAR EQUATIONS ON MINKOWSKI SPACE-TIME

3.1 Conformal completions
Consider an n + 1 dimensional space-time (.7, g) and let
§=0%. (3.1.1)

Let O;, denote the wave operator associated with a Lorentzian metric h,

1
Onf = ————=09,,(1/| det hag|h*Y 0, f).
ntf |dethp0| u( | de ﬁ‘ f)

We recall that the scalar curvature R = R(g) of g is related to the corresponding
scalar curvature R = R(g) of g by the formula

~ 1 n—3|VQ?
2 _ g
RQ _R—2n{ﬁmgﬂ+ 5 2 : (3.1.2)
It then follows from (3.1.2) that we have the identity
ne n 1 .

It has been observed by Penrose [37] that the Minkowski space-time (.#,7) can
be conformally completed to a space-time with boundary (.Z,7), 7 = Q27
on .#, by adding to .# two null hypersurfaces, usually denoted by .# T and
#~, which can be thought of as end points (.#) and initial points (. )
of inextendible null geodesics [36,37,42]. We will only be interested in “the
future null infinity” .#; an explicit construction (of a subset of .# 1) which is
convenient for our purposes proceeds as follows: for (z%)% < Z(wZ)Q we define
(2

g (3.1.4)
%z,

in the coordinate system {y*} the Minkowski metric n = —(dx?)? + (dz')? +
(d2?)? + (da?)? = nopdr®da® takes the form

T )
n=gplesdy®dy”,  Q=1asy"y’ . (3.1.5)

We note that under (3.1.4) the exterior of the light cone C&" = {n,gz*z” = 0}
emanating from the origin of the z*-coordinates is mapped to the exterior of
the light cone C’g“ = {Napy®y® = 0} emanating from the origin of the y*-
coordinates. The conformal completion is obtained by adding C§ " to . ,

M= U(CYN\{0}),

with the obvious differential structure arising from the coordinate system y*.
We shall use the symbol .# to denote C’gM \ {0}, and . to denote C’gM \{0}n
{y¥ > 0}. As already mentioned, .# so defined is actually a subset of the usual
&, but this will be irrelevant for our purposes.
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We note that (3.1.4) is singular at the light cone C2". This is again irrel-
evant from our point of view because we are only interested in the behavior of
the solutions near £+, and causality allows us to ignore this.

The above procedure can be adapted for several metrics of interest, such
as the Schwarzschild, Kerr, or Robinson-Trautman metrics, to similarly yield
conformal completions of space-time by the addition of null hypersurfaces .# .
This observation was at the origin of Penrose’s proposal to describe systems
which are asymptotically flat in lightlike directions through the use of conformal
completions.

It is noteworthy that the conformal technique allows one to reduce global-
in-time existence problems to local ones; this has been exploited by various
authors [8-13] for wave equations on a fixed background space-time. Further,
Friedrich [24,25,30] has used this approach to obtain global existence result
for Einstein equations to the future of a “hyperboloidal” Cauchy surface, with
“small” smoothly compactifiable initial data, cf. also [23,27].

On a more modest level, the identity (3.1.3) can be used as a starting
point for the analysis of the asymptotic behavior of solutions of the scalar wave
equation near .# T, as it reduces the problem to a study of solutions near a null
hypersurface. This is the approach used in this paper. There are associated
identities for fields of any spin [37], which provide a convenient framework for
similar questions for those fields.

3.2 Function spaces, embeddings, inequalities

Throughout this paper the letter C' denotes a constant the exact value of which
is irrelevant for the problem at hand, and which may vary from line to line.
Let M be a smooth manifold such that

M=MUOM

is a compact manifold with smooth boundary 0 M. We shall generally use the
notations and conventions of [3]. Throughout this work the symbol = stands
for a smooth defining function for M, i.e., a smooth function on M such that
{z =0} = OM, with dz nowhere vanishing on OM. It follows that there exists
xo > 0 and a compact neighborhood ¥ of M on which x can be used as a
coordinate, with ¥ being diffeomorphic to [0, z¢] x OM. For 0 < z1 < z9 < ¢
we set

My, ={peM|xz(p) <z}, (3.2.1a)
My 2y ={p € M| z1 <2(p) <22}, (3.2.1b)
OM,, ={pe M |xz(p) =z}~ M. (3.2.1c)

In all that follows the symbol €2 denotes one of the sets M, M,,, or My, z,.
Any subset of M,, can be locally coordinatized by coordinates y’ = (a:,vA),
where the v4’s can be thought of as local coordinates on dM. We cover M
by a finite number of coordinate charts O; so that the sets ; = [0,z¢] x O;
cover M,,. We use the usual multi-index notation for partial derivatives: for
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B=(B1,...,3:) € N" we set % = 3151 .95 We will write 9 for derivatives
of the form 62’3 2. 6,’?", which do not involve the 2! = z variable.

For a € R, k € Nand A € (0,1], we define €¢*(€2;) (respectively 63 , (%) ,
Ce () 5 65 (£24)) as the spaces of functions appropriately differentiable (on
Q; for a < 0, €; otherwise) such that the respective norms

—a = sup |z° )

1fllg () pegil f(p)
—a—A _ /
IFleg @y = IFlegay+sw  sp QWO IO
Ve Yoty eB(y, 2P )NQ; ly =yl
”fH%,g(Qi) = Z ||55ﬂ186fH<€3(Qi) )
0<|BI<k

Iflgs @) = Iflles @)+ > 1270 fllge, (@) (3.2.2)

+ 0+

|B1=k

are finite. Let €} be an open subset of M, or a submanifold with boundary in
M; for such sets we define:

[fllze@ = Sup I flze une) + 1 flley e o 2N9) 7

Ifllee @ = SllprH%H(Q n) T 1 ley sty one) - (3:23)

Here Ciia(U), for U being any of the set ;,,Q; N Q above, denotes the
space of k-times continuously differentiable functions on U (differentiable up
to boundary if U is a submanifold with boundary), with A-Hélder continuous
k’th derivatives, equipped with the usual norm. The associated function spaces
are defined in the obvious way. We note that f € €27(Q) if and only if
r 7 f € G\ ().

We define the spaces 74%(€2;) as the spaces of those functions in H°¢(£2;)

for which the norms [| - || yze @) are finite, where
d
1oy = D / (o tho8 )22l g (3.2.4)
0<|8|<k

where we identify M, and [a,b] x OM and dv is, say, a measure on OM arising
from some smooth Riemannian metric on M. This is equivalent to

/ (2~ (20, )ﬁlaﬁf)2d”’ , (3.2.5)

0<B1+|B|<k

and it will sometimes be convenient to use (3.2.5) as the definition of || f ||2%”ka(91')'

For €’s such that ©; C Q the spaces J%(2) are defined as the spaces of those
functions in H}°¢() for which the norm squared

1150y = Z 1£1362 00 + 11 @rtar,, ) (3.2.6)
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is finite. We note that
£ oy = 112

and that J6%(My, »,) = Hy(My, o,) for all & and k (in this last equality we are
implicitly assuming that z; > 0); the norms are equivalent with the constants
involved depending upon z; and x».

It is often awkward to work with coordinate charts, in order to avoid that
one can proceed as follows: Choose a fixed smooth complete Riemannian metric
bonM. Let x be any smooth defining function for M, we let X7 be the gradient
of = with respect to the metric b; rescaling b by a smooth function if necessary
we may without loss of generality assume that X; has length one in the metric
b in a neighbourhood of M. We cover M by a finite number of coordinate
charts O;, with associated coordinates v4; the v4’s are then propagated to a
neighbourhood of M by requiring

Xi(vM) =0.

This leads to a covering of M, of the kind already used, and one easily checks
that
X1 =0,

in the resulting local coordinates. This gives then a globally defined vector 0,
on My,.

Fori=2,...,r we let X; be any smooth vector fields on OM satisfying the
condition that at any p € OM the linear combinations of the X; exhaust the
tangent space T,0M. (If OM is a sphere, a convenient choice is the collection
of all Killing vectors of (S"~! h), where h is the unit round metric on S~
Over the domain of a chart (v4) of M, one thus has

04 = Y faP)x;, (3.2.7a)
=2

Xi = ) X wP)oa, (3.2.7h)
A=2

for some locally defined smooth functions f}", X ZA; clearly things can be arranged
so that those functions are bounded, together with all their partial derivatives.
We propagate the X;’s to M, by requiring

(X1, X;] =0,

equivalently
0. XA=0. (3.2.8)

It follows that (3.2.7) still holds with z-independent functions. For any multi-
index 8 = (01, B2, ..., 0r) € N we set, on My,,

Pp=x0xP. xPrp=phxl. . . XPr. (3.2.9)
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It follows that we have

1 flze (hay) = Z ||xﬁ196f||<gg(Mxo) )
0<|8|<k

L dx
1120y = D /M g 2t

0<|8|<k

where &~ denotes the fact that the norms are equivalent, etc. Here, |3] =
61+ ...+ 5. Remark: An equivalent norm can be obtained if we replace the
volume element dx dv by the volume element associated to any Cy— Riemannian
metric defined on Mp,. There is a useful way of rewriting | - || e (ar,,) Which
proceeds as follows: for f € J64%(M,,), s € [1,2], and n € N we set

fu(s,v) = f(x = x0— 5

5 ?) (3.2.10)

letting =~ denote equivalence one then has, after a change of variables,

ity dx
ean, = 5 3 / 22 [0, o)

n>10<|g|<k ¥ 277 @0,21 7" w0l xOM

_QO‘Z Z 22”0‘/ PP fo(s,0)*ds dv

n>10<|8|<k 1,2]x0M

= 33620{Z22na||fn||%{k([1,2]xaM) . (3.2.11)

n>1

%

Note that above we use the notation 27 also for 8551851X252 . ..Xfr, (as for
651)(5 I ¢ ").  More precisely, we write A &~ B if there exist constants
C1,Cy > 0 such that ChA < B < (C3A. In (3.2.11) the relevant constants
depend only upon « and k. It turns out to be useful to have a formula similar
to (3.2.11) for functions in My, ., ; this can be done for any z; and z2, but in
order to obtain uniform control of certain constants it is convenient to require
2:(}2 < z7. For such values of z1 and x9 we let ng(r1,22) € N be such that
2n0+1 < x9 < 2n0 For n € N, n > 1, and for any f : My, ., — RY we then
define f, : [1,2] x OM — RN by

S
n§n07 fn(sav):f(x:lQ_nvv)a
n=mny+1, fn(sav):f(x257v)7
n>no+l, fo=0. (3.2.12)

(This coincides with the definition already given for M,,, when this set is
thought of as being an “M,, ;, with zo = 07, if we set ng = +00.) A cal-
culation as in (3.2.11) shows that for any 225 < x; < z0, there exist constants
C1 and c1, independent of zg, x1 and z3, such that for all f € (Mg, .,),

Clmfm z:{ym||fn||Hk([1,2]xaM)}2 < ”f”?%f‘(Mrzyxl)

n

< Cray? 3 427 fall (.2 onn) } - (3.2.13)
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Equation (3.2.11) leads one to introduce spaces %y, ,, that arise naturally from
weighted Sobolev embeddings, c¢f. Equation (3.2.25) below: we define

1£1 20 = 22 2 flld, ooy (3:2:14)

k+/\
n>1

frn asin (3.2.10), and we set

BiiaMzy) = {f € Con(Q) | [ flIsg,, (M) < o0} -

k4
Clearly
Bg—i—)\(MIo) C CI?+)\(MI0) .

Since the general term fy, as well as sums of the form ¥,,> n f,,, of a convergent
series tend to zero as N tends to infinity, for f € By, ,(My,) we actually have

hm Hchng (M) =0 (3.2.15)
We have the trivial inclusion,
o >a = C0,(My,) C A (M) . (3.2.16)

The open inequality o/ > « in (3.2.16) has various unpleasant consequences,
which are best avoided by introducing yet another space — the space Gi' of
functions in HF (M,,) for which the norm squared

nz

dx
2 _ —a+01 0 2
a =su T D f(z,v)|"— dv
||f”g,c (Mazy) p E /[ 50 210 | f(x,v)]| -

0<B<k
(3.2.17)
is finite. We note that || f|lge(ar,,) is equivalent to
Ty sup {2 frll o 21 x0nn) } s (3.2.18)
n>

with f(s,v) = f(5%,v), as in (3.2.10). To define the G;}(My, z,)’s, assuming
again that zo < x1/2, we let I,,(z1,22) be defined as

n<ng, I,=[2""2,2" 2],
n=mng + 1 ) In0+1 - [ZIIQ, 2%2] )
n>ng+1, I,=0, (3.2.19)

where ng is as in (3.2.12). For all f € H°°(My, ., ) we set

1B 3y = s0(> / @02 Py (3220

i 0<|B|<k m{lnxaM}

Similarly to (3.2.13), there exist constants ¢z and C3, which do not depend
upon g, 1, and xo, such that for all 2z9 < z1 < zg,

cowy sup || fullm2xon) < N fllge s, ) < Coxy @ sup || foll o, (1.27x00) -
n n
(3.2.21)
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We have the obvious inequality

Ifllge ) < Iflze @) » (3.2.22)
together with the modified version of (3.2.16),
o za = CLCY (3.2.23)

in particular the function (x,v) — z® is in G (My,).
If S; denotes a space of functions, where k£ € N is a differentiability index,
we set
Soo = Nkendk ,

e.g., 9% = NienGy, ete.
We note the following:

Proposition 3.2.1 Let Q@ = M, or Q = M,,, 0 < 1 < 9, or Q = My, o,
2x9 < 21 < xo. For 0 < k+ X —n/2 ¢ N we have the continuous embeddings

G C Bilianya C Chsnnszr i S CClanpn,  (3224)

and there exists an xo-independent constant C' such that we have

viear  fllzg,, @ < Clflge (3.2.25)
viedy Wl , @ < Clfllgg@ - (3.2.26)

PROOF: (3.2.25)-(3.2.26) follow immediately from (3.2.11) and (3.2.13), to-
gether with the standard Sobolev embedding; the remaining inclusions in (3.2.24)
are trivial. O

All other inequalities involving Sobolev spaces have their counterpart in
the weighted setting; we shall in particular need various weighted versions of
the Moser inequalities:

Proposition 3.2.2 Let Q@ = M, or Q = M,,, 0 < 1 < 9, or Q = My, 4,
2z < 21 < 20, and let 4" = S5 (Q), etc.

1. There exists a constant C' = C(a, &/, 3, k, x1) such that, for all f € %f/ﬂ‘ﬁ(f‘
and g € %’jf ﬁ%§‘+’g_a/, we have

1590 o+ < C (Il Mgl + 1 9 over ) - (32:27)

Further, V |v| < k,

12727 (fg) = (@ 27 )9l o0 < C <\fH<g§HgH%ﬂkﬁ +

N
11l <||:cazg||%xmf 3 Hxigmggw)) . (3.2.28)

1=2

where the vector fields X are defined in Equation (3.2.7).
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2. Let F € Cx(M x RY) be a function such that for all py € R* there exists a
constant C; = C1(po) so that, for all p € RY, [p| < po, we have

IFCDlgpqar,,y < Ci -

Then foralla < 0, 8 € R, and pg € R™ there exists a constant Cy(po, k, o, 3, 21)
such that for all R™V-valued functions f € %a—ﬁ( ) with ||.’EﬁfHLoo < po
we have

[76.2)] . = Co0 171 p) (3.2.29)

Further, if F' has a uniform zero of order [ > 0, in the sense that there exists a
constant C' such that, for all p € RY and 0 < i < min(k, 1),

5

opt
then for all « € R, B > 0, there exists a constant Cg(é’,l,k,a,ﬂ,po) such that,
for all f € 2°7"7(Q) with || f|| () < po, we have

<Clp|", (3.2.30)
G

[F6.2p)], < Coll Tl (3:231)

Remark: The hypothesis (3.2.30) will hold if F'is e.g. a polynomial in p with
coefficients of p/ vanishing for j < [, and being functions belonging to (5,? for
j=>1

PROOF: We shall give a detailed proof of (3.2.29) and (3.2.31), the inequalities
(3.2.27)-(3.2.28) follow by an analogous argument using [39, Volume III, p. 10,

Equations (3.21)-(3.22)], ¢f. the calculation of Proposition 3.2.3 below. Let,
similarly to (3.2.10),

oS oS oS
Fu(s,v) = F (o= 50 (50) fa = T20))
2 2
from Equation (3.2.11) we have
HF("xﬁf)”ifk“(Mz ~ g Y 2| Bl 2on) - (3.2.32)
n>1

We have the obvious bound

AN ToS
1o ‘(2—0 ! <2_n’v>‘ <o Sl < po.
[1,2]xOM

Further the partial derivatives of (s,v) — F,(s,v,p) with respect to s and v at
p e RV fixed, Ip| < po, can be bounded by a constant depending only upon

sup HF(',P)H%,Q(MIO) :
[p|<po

The usual Moser inequalities [39][Volume III, p. 11, Equation (3.30)] give

||Fn‘|%[k([172]><a]\/[) <C (1 =+ 2_2nﬁan||§{k([1,z]X3M)> )
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with f,, asin (3.2.10), and with a constant C' depending upon k and pg. Inserting
this in (3.2.32) one obtains

12 DZeoin,y < C D22 (0 + 27| fullr uggxonn)
n<l1

C (1 + Hf\%a_ﬁ(Mzo)) . (3.2.33)

IN

This establishes (3.2.29) for Q = M,,, and (3.2.29) with = M readily follows.
The remaining (2’s are handled in a similar way.
To establish (3.2.31), we note the inequality

< C‘p’max(l—i,o) ,

ahl—i_iFn('ap)
Oy Op*

which follows from (3.2.30) when |y|+¢ < k. Letting y stand for (s,v) €
[1,2] x OM, it then follows that for |o| < k we have

S g\ B+t
0°F,| = 3 Clon,...,015) (2—n)
o |+l =lo|
ohl+ip, 571 (5P 5 (P
g O (& dn) 07 )

< 2—15"0 Z ’801 (Sﬁfn)’ e ‘an(sﬂan :

oy |+ 4o <|o]
The usual inequalities [39, Volume III, Chapter 13, Section 3| give
IEull iz xonny < Ck,p0)2” || full (1,21 01)
for some constant C(k,pp), and one concludes from (3.2.32), as in (3.2.33). O
We have the following sharper version of (3.2.27)-(3.2.28):

Proposition 3.2.3 Let Q@ = M, or Q@ = M,,, 0 < z1 < g, or Q = My, 4,
2zy < 1 < w, and let JG* = (), etc. There exists a constant Cy =
Cs(a, B, k) such that, for all f € S NBY and g € g,f ﬁ%oﬁ we have

1791 oo = Cs(l fllsg llgllgs + I fllgellgllen) (3.2.34)

Vvl <k, ll27 27(fg) — (@ Z7 )9l oo

<c (HfHBgHgHgg +11f e, <\|a:axgu<gg +3 ||Xigucgg>> (3.2.35)

=2

where the vector fields X are defined in Equation (3.2.7).
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Remark: A useful, though less elegant, inequality related to (3.2.34) is

Vivtol <k | (27 )27 (D79)| ypore < Ol fllsg lallgp+I1 Flloe l9llese) -

(3.2.36)
ProoOF: We will prove (3.2.35), the proof of (3.2.34) is essentially identical.
When Q = M, we do the rescaling f,.(s,v) = f(5%,v), gn(s,v) = g(52,v),
we then have, for all |y| <k,

[ 27 (fg) — (« @”f)gll?%aw

~ 1y N 20D G (fug0) — (D7 Fa) gl by 1.2 wonn

—2(a n(a
< Cag DN 20 (| gl + Ul | ZnlE)
—2(«x na n,
Cg ™) <<Z 2 anH%oo> sup (22 ﬁl!%l!?u)
2na 2 2npB 2
+ (ZQ anHH“> sup (2 H%ﬂm))

C (115 9120 + 113, NgllZ )

2
< Cu (I71sggllgs + 1715 Il (3.2.37)

IN

%

(In the third line above we have used the inequality [39, Volume III, p. 10,
Equation (3.22)].) The case Q = M follows immediately from the above; the
case ) = My, ., is treated similarly using (3.2.12)-(3.2.13) and (3.2.19)-(3.2.21).
g

Similar results can be proved in weighted Holder spaces:

Lemma 3.2.4 Let Q@ = M, or Q = M, 0 < x1 < x9, or Q = My, 4,
229 < a1 < 20, and let € = €2 (Q). Let f € 62 ﬂ‘féﬁ and g € 6} ﬁ%és with
a+d =7+ 3 =oc. Then we have fg € ¢ and

Ifolley < Calllfllgpllglley +llgllggllfllze) s (3.2.38)

PROOF: The proof is very similar to that of Propositions 3.2.2 and 3.2.3.
We use the same conventions as in (3.2.12), (3.2.19). We have |fglzs ~

sup, [1/9lc, ). where
w=|[1,2] x IM , (3.2.39)
similarly for f and g. The interpolation inequality [31, Appendix A] gives

| fagnlle,w) < CUlfalloollgnllcy@w) + lgnllsoll fullcy(w)), which leads to the con-
clusion. O

We have the following %kﬁ equivalent of the second part of Proposition 3.2.2,
with a similar proof, based on Lemma 3.2.4:
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Lemma 3.2.5 Let F' be a function satisfying the hypotheses of point 2 of Propo-
sition 3.2.2, with a uniform zero of order [ in p in the sense of Equation (3.2.30).
Then, forany e >0, 3 € Rand f € ‘Kf N L>® we have F(.,z¢f) € ‘K,furle, and
there exists a constant C' depending upon || f| e such that

[ 2 Pllgorie < CULFloo) 1 fllegp - (3.2.40)

The space of polyhomogeneous functions e = “png(M) is defined as the
set of smooth functions on M which have an asymptotic expansion of the form

oo N;
[~ Z Z fija™ Il x| (3.2.41)

i=0 j=0

for some sequences n;, N;, with n; /" co. The polyhomogeneous expansions of
the introduction are of this form if r there is replaced by 1/z; this corresponds
to the conformal transformation of Section 3.1, which brings “null infinity” to
a finite distance. We emphasize that we allow non-integer values of the n;’s;
however, we shall mostly be interested in rational ones, as those arise naturally
in the problem at hand. Here the symbol ~ stands for “being asymptotic to”:
if the right-hand-side is truncated at some finite ¢, the remainder term falls off
appropriately faster. Further, the functions f;; are supposed to be smooth on
M, and the asymptotic expansions should be preserved under differentiation. It
is easily checked that the space 7, is independent of the choice of the function
x, within the class of defining functions of 9M.

3.3 ODE’s in weighted spaces

We begin with some a priori estimates in weighted spaces for ODE’s. While
the results are well-known in principle, and easy to prove, we present them in
detail here because their precise form is useful for our arguments later in this
work. For a vector w we denote by ||w|| or by |w| the usual Euclidean norm,
while for a matrix b the symbol ||b|| denotes its matrix norm.

3.3.1 Solutions of 0,¢ + by = ¢ in weighted spaces

Let O be a subset of OM, which might be the whole of OM, or a coordinate
patch of 9M with coordinates v4, whichever appropriate in the context; we set

u$27551 E]ZEQ,{L‘l] X O X [OaT] ) (331)

yfﬂ?,fﬂl E]:E%xl] x O, (3.3.2)

with 0 <z < 1. We define € (U, ) as in(3.2.3), with 0, being considered
as a tangential derivative like 0, 4.

Proposition 3.3.1 Let a € R, b € €2 Uy, 21, End(RY)), ¢ € €3 (Uyy 2., RY),
then the unique solution ¢ of the equation

O-p+bp=c, (3.3.3)
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with initial data @ = ¢|r—0 € €2 (Fagz1, RY) is in € (Uyy 2, RY) with

1Pl @y ) < C (1 N T, 8li6004 1) ) (1850 () + Il 0001 -
(3.3.4)
We also have the estimates

(M) lgg (g 0y) < CelllT <”S0(0)||<65*(<712,z1) +/0 e Wlslic(s) g4y 00 d8>
(3.3.5)

lelepesn,.) < oecubwfx<||so<o>\<g,g<y@,wl>+ /0 &=l e(5) eg g, .y S
. / 1Ol 31(5) g, (nwmuww”m

+/ eb""’tHc(t)Hcg(?(yzwl)dt> ds> , (3.3.6)
0

for 7 € [0,T7.

Remarks :

1. Analogous results in B’ spaces can be proved by similar arguments.

2. An a-priori estimate in weighted Sobolev spaces for (3.3.3) follows from
Proposition 3.4.1 below by choosing e_ = 9, and v € (), there.

PRrROOF: Let k € N*, and let 5 = (51,52, ... 0n) be a multi-index with |3| < k;
9P p verifies the equation

2:0% = —3P(bp)+ 0. (3.3.7)

Let € > 0 and set

1/2

e(.,1,€) = e—i—Z ﬁla w,aﬁw) ;
18I<k

E(r,e) = lle(, 7)1 (A1p 0y) -
When k& = 0 one easily finds

dre < |[blle + el ,

and (3.3.5) readily follows. For k£ > 0 we have
1

ge - L 201-0) . 5B 5P
e 3 Z (8:0%p, 8%p)
BI<k
1
< =) P00 (bp+ o) 10%¢]
|BI<h
Clk,n
< CEN ol sy + el
< Ok n)([bellee 7,y o) T lcllep(Fayar) s
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where C'(k,n) is a constant depending upon k and the space dimension n, and

which arises from the inequality Y7, as| < /p\/>_; |as|? for any real sequence
(a;). The weighted interpolation inequalities, Lemma 3.2.4, imply

16# 0 (F2y0y) < CUDbl Lo (70 o 1Pl 50 (S o) F 00 (1 ) 1P G5 (F2g 1)) 5

2,71

where C' is a constant which depends upon k, N and n. It follows that

o-e

IN

C (HbHLoo(yzg,zl)HSDH%,g(yIQ,Il) F1bllgo( 7,y o) 1915 (F2g0y) T HCH%,;M(%Q,IIO

N

< € (Iblloo (e 1) + Ibllgpisry o 5y ) + el iy -

with perhaps a different constant C. By integration we obtain

e(r) < e(0)+C /0 (10l 205 ) + 17y 1205 7y ) + (i) s
from which we deduce

B(t.e) < E(0,6) + C /0 (1Bllso2(5,) 4 1) gy ) [903) i 7y ) + Ny ) ) s
Using Gronwall’s Lemma and letting ¢ — 0 one obtains

E(r,0) < e“lPl=tp(0,0)

+C/O eCHb”‘”(T_S)<Hb(8)H%ﬂg(yxg,xl)HSO(S)H%(;I(%Q,ZQ + HC(S)H%,;M(%Q,IIOCZS-

The estimate (3.3.5) for [[¢]la(s,, ,,) inserted in the last inequality leads to
Equation (3.3.6). The time-derivative estimates follow immediately from the
above and from the equation satisfied by ¢. O

3.3.2 Solutions of 0,¢ + b¢ = ¢ in weighted spaces

All the results in this section, as well as in Section 3.3.4 below, remain valid if we
replace the set Uy, ,, defined in Equation (3.3.1) with .7, ,, defined in (3.3.2)
— the time dimension does not play a preferred role in the current problem.
We start with the following elementary result; the point is to ensure that the
relevant constants are xo independent:

Lemma 3.3.2 Let g € kaa(lxlm,wl,RN), 0 < x9 < x1, then f defined for a > —1
by

is in €0 (Usg,zr, RY), with

1
1y <05 {1 )
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Similarly fo defined by

1

fo(z,v,7) = —/ g(s,v,7) ds

satisfies
(14 (In2)®) Y2 fy € €Uy sy ) for a = -1,
foe g™ gy, ) fora < 0and a # —1,
with
1 x?-‘rl
||f2||<g];nin{a+1»0}(uz27m1) < max {17 ' 1+a ; 1+a ||g||<€]?(u952,9c1) .

PRrROOF: We have the trivial relations

x
1
/sads < ——z* fora> -1,
o a+1

1
/ stds = Inzy—Ilnz,
x

as well as the commutation rules:

T

Dy ' fdz = xavAf dz |
Or xfdac = xandx
Note that
1o, oy = 102 flgg @y D 105004 f oy, .y (3:38)
0<i+|5|<k

with (|02 fll¢e ey, = l9ll€e Wy .,)- To estimate 818514]5 one writes

000 f| < /|&%mw,

2

X
= 10;0gllisp 5™ ds
Z2

1 a+1 1
< ari” 10-0,9ll<e -
The results for f> are established in a similar way. O

We shall use the following notation
Iy = {x =22}, (3.3.9)

with the range of the other variables being in principle clear from the con-
text; this is the equivalent of the set 0M,, of Equation (3.2.1) when the set-up
described there is assumed.
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Proposition 3.3.3 Let 0 < 25 < 21, suppose that b € %, “(Usy 2, , End(RY)),
0<e<1l c€CUpu,RY), and let ¢ be a solution in Cy(Us, s, ) of the
equation

Bep+ b = c.. (3.3.10)

Then the following hold:

1. Ifa < —1,then ¢ € 62 (Usy,) and we have, for a +2 — € # 0 and for
x2 < 23 < 1 small enough so that C’(Hbﬂ%ge,xg) <1,

1 o 1
19l ot @y, gy < 77 C(Hbllﬁe,m)(% HéHco(st)erHCH%g(uzQ,Ig)) :
(3.3.11)
where -
€T €
ClIbllege> w3) = Mﬁ\\b!\gﬁ%@s) : (3.3.12)

Moreover, if zo < x3 < 1 is small enough so that C’iC’(HbHnge,xg) <1,
where C; is the constant in the interpolation inequality (3.2.38), then

1Plgett,, ) = Calllbllgre: Cisza) (H¢($3)Hck(yz3)+||CH<5,3(L1E2,$3)

bl oy 168 o) + lelleg ey o))
(3.3.13)

with Ca(Hbﬂcgo—ea Cj,x3) an increasing function in the first and third variable.
2. If =1, then (14 (In2)?)"2¢ € €L Usy )
3. If a> —1, then ¢4, =limy_,5, ¢ is in Ck(Iy,), with
¢ — by € G Uy ) + C0T Uy ar) (3.3.14)

¢ € GO Uy, if Gy =0, and

x3 T
(16l + B lekpn, ) )
(3.3.15)

1

. <
Wh(wwﬂ—l—OWW%ﬂm)

for 9 < x3 < 1 small enough so that

1—e
T3

C'(IBllgyer w3) = T Wl ey ) <1

Moreover for z3 small enough so that C’iC/(HbH%Js,:cg) < 1 we also have

1669y ) < Chllbllgre Coots) (168 cu(sg) + lelligp ey

Hllag ey, ) 608t ) + el 01y )
(3.3.16)

with C?, an increasing function in its first and third argument.
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Remarks : 1. The inequalities above are standard when xzo > 0 and
when the constants are allowed to depend upon xo, regardless of whether or
not x3 can be made small. As already mentioned, the point here is to make
sure that the constants do not blow up as x2 gets small.

2. In case 2. log-weighted estimates are easily derived; they will, however,
not be needed in what follows.

PrOOF: 1. For simplicity, we will write €7 for € (Uy,.,). Let ¢ be a (local)
solution of (3.3.10), corresponding to initial data at {z = x;} in Cy(#, ). For
a >0 set
ea(m, v, 7) = (a+ > 271(0°9|0°¢))'/?
1BI<k

1—e
and e := eg. Let x3 €]xa, x1[N]0, 1] be such that pfﬂﬂbﬂ%ﬂ < 1. We have
for all o < x < x3,

1
1 26, (48 3
- |5Z<kx (8%0,0|8%¢) 11, (3.3.17)

Since 3; is non-negative we have —d,eq(z, v, 7) < II ; further

o= = 3 220706 - 0]0%) |

€q
1B1<k
1
< - B1 5B 8158 8158
s o > (2710%| + 2710°(bg)|) [« 07| ,
1B1<k
< Y a0 + [0 (bg)| - (3.3.18)
1BI<k

Clearly

Z]azﬁlf)’gc\ = xa2|x*a+318ﬂc|,

< alefle
Y M0 be)| = ey a0 (b))
181<k 18I<k
< .TO‘+1_6H5¢”<55+176,
which gives
—0zea < 2%c4p —I—xo‘“_eHbqﬁH%ﬁlfﬁ. (3.3.19)

Consider, first, the case k = 0; in this case (3.3.19) reads

~dsca < el + 2 bllg [9llgerr
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which, after integrating over [x3,x] and passing to the limit a — 0, gives

N " .,EoHrl 1,a+1
(@t r) < SQBJJVﬂ-F<—( L )>Hc%g

l+a)  (1+
x§+2_6 pat2—e
— b . N ’
g2 a—s ~ Tra=g e 1ol
o+l
S H¢HCO jxg) 4+ — |1 T a | || ”<g(31
xoe+2—e pat2—e
+(==2

(24 a —¢) o 2+a-— 6))HbH<g(;€H¢Hcgoa+1 . (3.3.20)

Suppose for the moment that o + 2 — € < 0; Equation (3.3.20) yields

A a+1 xa+2—e
e(z,v”,7) < HQZ’HCO(L%?, 1+ a ||| H%” +m)”b”%—€”¢”<§§+l )
(3.3.21)

and since x~17¢ < :L‘gl_a < 1 we obtain

—a—1 A —1l-« 1 xl—e
x (x,v",7) < a5 ||¢”Co(ﬂx3 1+ a |H ||<€ +ﬁ"b”%—€”¢“<€g“'
Suppose, further, that o + 2 — € > 0; we then have

A :L.aJrl xg+2 €
ez, v",7) < |9llog(r,) + Tt ,II cllgg + ﬁ)l\bll%—ellwl%gﬂ ;

which gives

1
_ A 1
x ¢ le(x,v ,T) < 51331 a“ﬁf’”()o(ﬂg%)+“1+a|||c||<€§
1—e
L3
T b —€ (o7 .
+’2+a 6’“ H%O H¢H<go+1

The inequality H¢H‘€5”“(Mm2,z?,) < SUp[, 4 © ' “e shows that in all cases we

have

1 L 1
o < @
H¢H<go Jr1(1,{”,%3) =71_ C(”bHch*ewT?)) ($3 H(bHC'o(fzS ‘1 T o ‘H HCK )

with the constant as in Equation (3.3.12). Consider, now, any 0 < k € N;
Equation (3.3.19) and the interpolation inequality (3.2.38) give

~0zea < 2%cllgp + 2T Ci(|Ibl e Ol garr + 1bllg—c Dl gasr) -

An argument identical to the one before, considering separately the cases a +
2—¢€>0or <0, leads to

1 L 1
o < xa @ + ———|le|l¢e
dllgen < 1_chw%ﬁx9<3 6wy + o alcler )
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C; :c%fE
Bllop—cl|Bl] et
I- Cl C(Hbu%ofﬁx?)) ’2 + o — €| || ||<gk H¢H<go +
C(z3)
< «
T 1=C (bl e as) (H¢||ck<fw3> + llell;

+

C; 1
! bll—e —a—1 L .
T Cllbll g 3) 161l (azg [¢llco(.rny) + v al el >> :

which gives (3.3.13). We have thus shown that ¢ € ‘KIS‘H(Z/{J&%%); the property
that ¢ € €2 (Uy,., ) immediately follows.

2. The proof is identical, except for a few obvious modifications in the
calculations.

3. To obtain the L* estimate, we start from (3.3.17)-(3.3.18) with k = 0,
which upon integration and passing to the limit a — 0 gives

e(z, o, 7) < eag,of )+ 75 lelleg + 7 [1bll—llllzo
T - T e U %0
from which we deduce
o+l ple
1911250y g) < I0llze(g) + 25 el + T Bl Nzt

and (3.3.15) follows. The proof of (3.3.16) is similar to that of the analogous
statement in point 1. From what has been said it can be seen that ¢, =

lim,_,,, ¢ exists and is in Ck(#,). It remains to show that ¢ — ¢,, satisfies
(3.3.14). Integrating (3.3.10) we have

B(@,) = iy ()e Jaa b +/ el b)ds oy Ny | (3.3.22)
T2

from which the result easily follows. O

3.3.3 Polyhomogeneous solutions of 0,¢ + bp = ¢

We pass now to an analysis of ODE’s with polyhomogeneous sources. The
results here have an auxiliary character, and several of them are rather ele-
mentary; they will be needed to handle the real problem at hand, with partial
differential operators. Let O be an open subset of OM, we set

Uy, =]0,21] x O x [0,T] . (3.3.23)

Integer space-dimensions force us to consider polyhomogeneous expansions with
half-integer power of x; in order to account for that, we introduce an index

5 = 8 5
where d is a non-zero integer, d € N*. We will mostly be interested in the case
d =1/2 or d =1, however other values are also possible in the formalism here.
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Results analogous to the ones below hold for the general polyhomogeneous
expansions of Equation (3.2.41), which can be established by similar methods.
We find it of interest that a consistent framework can be obtained in the setting
considered below:

Proposition 3.3.4 Consider the system

Orp+bp=c, (3.3.24a)
PN .
Plir=0y(@,v) = @(z,v) = »’U’Bzleé Iz @ij(x,v) + Gpsspre(T,v)
i=0 j=0
(3.3.24b)
~ T ~ o €
2ij € Co(Ir =01, Gporpre €CR (T =0}), (33.24c)
with
p N
b(z,v,7) = Z sz‘é In? & bij(@,v,7) + bpsre(z,v,7), (3.3.25a)
i=0 j=0
bpsie € CRT(Uy,) . bij € CooUs,) (3.3.25b)
p N
c(x,v,7) = 2" Z Z:L"“S In? = cij(w,v,7) + cpsipre(w,v,7) ,(3.3.25¢)
i=0 j=0
Cosipre € CRTITUL),  cij € Coolllny) (3.3.25d)

where 0 < € < 4, and (IV;), (N}), (N}') are sequences with integer values, and with
be LoU,y,) .

Then the solution ¢ takes the form

p M,

ple.0.7) =2 SN aP W x pij(x,0,7) + pparpee(rvT) . (3.3.26)
i=0 j=0

with ¢;; € Coo(Us, ), My, is an integer sequence and @psig+e € &Hﬁ“(uxl).

To prove the proposition we shall need the following lemma:

Lemma 3.3.5 Under the hypotheses of Proposition 3.3.4, suppose that in addi-
tion we have
Ppo+B+e = bpste = Cpstpte =0

Then for any € €]0, 6] we have

=

k3

p
p=a" > Wi +ppipre (3.3.27)
i=0 j

Il
=)

with @i € Coo(Us,), Ppstpte € %&5”*6%1), for some integer-valued sequence
M,
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PROOF: Inserting (3.3.27) in the equation (3.3.24a) and tracking the coefficients
in front of 2% In/ x one finds the following set of equations

MO = maX{NO,Né’ , Mi+1 = maX{Ol’il]?i('Mk + Ni,—k:? Ni/ff—lﬁ Ni+1} 5
<k<i
[ mln{Nkvj}
€ [[O,p]] , J € [[OaMz]] ) 7'301] + Z Z bkl@z kj—1 = Cij ,
k=0 =0
p ’L mln{NkJ}
OrPpsspie + Voporpre = — Y ’629326 REEDD Z bripi—k j—1} -
i=p+1 7=0 k=0 =0

Here [a, b] := [a,b] N N. This system is easily solved: one begins with i = 0 and
solves the equations for j running from 0 to My. This can then be repeated for
t =1, etc, until 7 = p is reached. This provides the functions ¢;;. Finally, one
solves the last equation for the remainder term 5434, with initial value zero,
noting that the right hand side of the resulting equation is in GLoto +6(Z/I$1),
and one concludes using Proposition 3.3.1. 0.

PROOF OF PROPOSITION 3.3.4: With the notation of the proposition, we set

bphg =b-— bp5+€, Cphg = C — Cps+f+e; Saphg =p— @p(;_;,_/g_;,_e. We use the Lemma
above to obtain a solution ¢ppe of the problem

aTQD + bphg(p = OCphg > (3328)
p N

ole=¢ = xﬁZZaE’5 In/ x @ij(z,v) . (3.3.29)
i=0 j=0

Then we solve
87—90/ + b(/)/ = Cpé+B+e — Opé+ePphg

with ¢'|;=0 = Pps+a+e. According to Proposition 3.3.1 we have ¢’ € %ngrﬁJrE(Um ).
To conclude we set ¢ = @phe + ¢’ which is of the required form, and solves
(3.3.24c). O

3.3.4 Polyhomogeneous solutions of 0,0 + by = ¢
Proposition 3.3.6 Let ¢ be a solution in C_ (U, ) of

b
Oz + P=c, (3.3.30)

and suppose that (3.3.25) holds with some € €]0,4[, 8 € R, and with some integer-
valued sequences (N), (N/). If
b=o(z)

(equivalently, by;(0,v,7) = 0), then

D p M;
i=0 j=0 i=0 j=0
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with

@ij y Pij S Coo(um) ; Ppé+14L+¢ € %&54_14_64_6(“11) 5

for some integer sequence (M;).
PROOF: Proposition 3.3.3 shows that for § > —1 the limit

©o(+) := lim ¢(z, )
z—0
exists and is a smooth function on O x [0,T]. If b is a multiple of the identity
matrix the result is then obtained by a straightforward analysis of the formula

p(z,") = po(-)e Jo eIt / el ey, Ny (3:3.32)
0

using the estimates of Lemma 3.3.2. For § < —1, and again for b — a multiple
of the identity matrix — we use instead

o(@,) = plan/2,-)e T2 et / el oMoy, dy . (3.3.33)
z1/2

In the general case, we first note that it follows from Proposition 3.3.3 that
there exists A € R such that 1 € €. We then write

o) — ¢ = —gw e groL, (3.3.34)

integrating gives
x
P — / ceEr .
0

Inserting this equation in the right-hand-side of (3.3.34) and integrating again
one obtains a similar equation with a remainder term falling-off one power of
0 faster. The result is proved by repeating this procedure a finite number of
times. O

3.4 A class of linear symmetric hyperbolic systems

In this section we shall consider a class of linear symmetric hyperbolic first order
systems on a set of the form M, x I, where I is an interval corresponding to
the time variable, which will be denoted by 7. (We note that in some of our
further applications the vector 9/07 will be lightlike, and not timelike as is
usually the case. It should be pointed out that in our conventions the time
variable is the last coordinate, allowing = to be the first variable, consistently
with the conventions of the preceding sections.) We start by introducing some
notation for the sets within the “space-time” My, x I, which will be relevant
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in what follows!:

t>0, 2(xe+t) <z <m0, Zgomit=1{7=1, x2 <z <z —2tf3.4.1a)
T>0, 2(x2+47T) <z <, Q01,7 = Uperer Bag,zy,r (3.4.1b)
0<2t<z <uxp, Yor={r=t,0<z <z —2t}, (3.4.1c)
0<2T < 1, Qv 1 = Upeter Saryt - (3.4.1d)

There is a natural identification between X, 5, + and My, ;, —2, similarly be-
tween X, ; and My, o, and we shall freely make use of such identifications
throughout. We shall write [|£(t)]l s for | Fls., ., |5y 0y 00 OF £ [ Fl5,, e (50, 0
etc.; the distinction should be clear from the context.

We shall be interested in symmetric hyperbolic first order systems which
in local coordinates take the form

[A"(2)0, + A(2)] f = F, (3.4.2)

where z¥ = (3%, 7) and (y*) = (x,v?), with the following properties:
¢1) f and F are sections of a bundle which is a direct sum of two N;
and NNy dimensional Riemannian bundles over M obtained as some tensorial

products of subspaces of TM; we will write

f:<z)’ F=(‘Z> (3.4.3)

In local coordinates ¢ and a are thus RN valued, while 1) and b are R™V? valued.
The respective scalar products will be denoted by (-, -), and (-,-),. We suppose
there exists a smooth background Riemannian metric b on My, (¢f. p17) whose
line element can be written

b=da? + hap(z,v®)dv dv? |
and we define the Lorentzian metric g on M, x I by
g = 2dzdr + dz* 4+ hap(z,v®)dvidv? |

so that b is the metric induced on My, x {7} (identified to M,,) by g. In this
section V will denote the Levi-Civita connection associated to g on M x I. The
form of the metric g leads that VxY € T M x {7} for X, Y € T' M x {7} and

1The motivation for the factors of 2, and the general form of the sets considered, arises as
follows: The set OM x I should be thought of as a smooth null hypersurface in space-time;
e.g., in Minkowski space-time with Minkowskian coordinates y*, it can be the intersection of
the half-space {y° > 1/} with the light cone emanating from the origin y* = 0 . Then 7
is the Minkowski time, perhaps shifted by a constant, say 7 = y° — 1/5. The coordinate z
is a coordinate which vanishes on M x I, in the current example e.g. = /> (y%)2 — 3°.
Finally, in such a Minkowskian setup, the hypersurfaces © = 1 — 27, which determine one of
the boundaries of the ¥’s and Q’s defined in (3.4.1), correspond to the converging light cones
¥ + /2. (y))2 = const. The restrictions 2(z2 +t) < 1 < o (in the definition of Xz, 4, ,¢)
and 2(z2 + T) < z1 (in the definition of Q, ., ) are not necessary, and are only made for
simplicity of discussion.
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V is the Levi-Civita connection associated to b on M x {r}2. We denote ¥
some generic connection Y defined on N; and Ny compatible with the scalar
products defined above, e.g., if X is a vector field on M, x I, then

X(<¢v ¢>1) = <Y7X¢7 sz)>1 + <¢a WX¢>1 ’ (3'4'4)

for ¢,v in Ny, similarly for (-,-),. 3
¢2) The left hand side of (3.4.2) can be written as

E’jW<p + L) B B ©
(50 g ) (o e ) (%) eas)

where L is a first order differential operator. Here LT denotes the formal adjoint

of L, in the sense that if Q@ = M, or M,,, or My, ,,, and if ¢, are in C1(2),
then

/ (0, L), du = / (Ll ), d (3.4.6)
Q Q

where dyu is a measure on M which will, we hope, be obvious from the context.
By density Equation (3.4.6) will still hold with Q@ = M,, ,, for all o, € R,
all p € % (My,,) and all ¢ € ,%ﬂlﬁ(Mm,ml). Equation (3.4.6) forces L not
to contain any 7- or z- derivatives, where the letter x denotes a coordinate as
defined in Section 3.2, thus

L =0z,0,7)04 4 L(z,0,7) . (3.4.7)

It follows that the principal part of the system (3.4.5) is of the form

Er9, 1404 )
, 3.4.8
( (KA)taA Eia,u ( )

where A! denotes the transpose of a matrix A. Equation (3.4.8) explicitly
shows that (3.4.5) is symmetric hyperbolic when the EY’s are symmetric with
E7 positive definite; the notions of “symmetric hyperbolic” and “symmetrizable
hyperbolic” are identified throughout this work.

The hypotheses above will be assumed throughout this section.

3.4.1 Estimates on the space derivatives of the solutions

Let us pass now to the description of the hypotheses needed to derive weighted
energy estimates for space derivatives of f. To obtain such estimates, we shall
require the existence of a constant C such that the (matrix-valued) coefficients
¢4 and ¢ satisfy, in the relevant range of 7’s,

1 goorn, ) + 3 1A lgoa,, a0y < Cr (3.4.9)
A

2This hypothese will simplify the notation here, note this will no longer be satisfied in the
Einstein analysis in the following chapter.

3In the setting of Minkowski space-time and wave equations, Y will be the connection
induced by V on T'S;,» and some of its tensor products (corresponding to N1 and Nz), where
Sz, is the sphere defined as the intersection of the level set of x and .
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Similarly writing
Lt = ETA(JU, v, T)04 + KT(:U, v, T) (3.4.10)

we require

16 () lgo(ar, o) +ZH€* lgp(rtsy -2y < C1 - (3.4.11)

%3) The matrices E are symmetric and satisfy
Efn, >eld, Elox < —eld |E*9,z| < Ciz (3.4.12)

for some € > 0. Here n,, denotes the field of future directed (i.e., g(dr,n) < 0) g-
unit normals to the surfaces {T = const}. (Later on we will mainly be interested
in the case of E''s of the form Ef = e/ ® Id, for some vector fields € .) For
simplicity we shall also assume

BEL =0; (3.4.13)

this is by no means necessary, but is sufficient for the purposes of this paper.
We will further assume?* that the E*’s satisfy a bound of the form:

1B (llgoats, ory + 10:E2 (Dllgp a0
HIOAE s vty )+ IDWE ) Dlzmary, 0y < Cr. (3414)

where we set 5
DL = VB4 + (VB

As far as the Efﬁ’s are concerned, we allow singular behavior which should,
however, be somewhat less singular than 1/x; to control that, we require ex-
istence of a function ¢ : RT™ — R, satisfying lim, .o {(z) = 0, such that for
0 < x <z — 27 we have

1B ()l oy + 1925 (D)l
HIOAEL (T)llgo  (a,) + e DB (M) 1o ar,y < C(2) . (3.4.15)
When the operators EiWu are written out explicitly as
EiWM =EY0,+ By , (3.4.16)
we require that

IB-(Dllgsnn, oy <Crv 1Br(Dllg 1) <), 0 <z <ar—2r,
(3.4.17)
%¢4) The matrices By, a,b = 1,2, satisfy the bounds

1B (T)llgo(ar,, —ory) < C1 s
||312(7-)”gk—1/2(Mz) + [ B21(7)]| AR 1Ba2(T)lleg -1 (ar,y < €(x]3.4.18)

“We use a convention in which the covariant derivatives D, EY include terms associated
with the vector density character of X* defined by (3.4.21); in particular this should be taken
into account when verifying that the estimates (3.4.14)-(3.4.15) hold.
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this last equation holding again for 0 < x < z1 — 27.
Our final hypothesis concerns the “acausal” nature of the boundary of
Qyy 20,7 (quotes used to avoid confusion with the Lorentzian definition of acausal):
€5) 0y, 4,1 is “non-timelike”® in the sense that for any covector ny,
outwards-directed and g—normal to the differentiable part of 0Q, », 7N {7 >
0}, we have
Efn, >0. (3.4.19)

(We note that (3.4.12) already guarantees that (3.4.19) holds on 0y, », 7N {7 =
T or T =0}.)

Weighted energy inequalities in J7;* spaces with arbitrary values of £ may
be proved under various hypotheses on the coefficients which appear in (3.4.2).
We note one such result for systems satisfying ¢'1)-¢5), which lies in line with
our remaining investigations. The restriction o« < —1/2 seems to be inherent
to the problem at hand. We consider the case o < —1/2; the case o = 1/2 can
be handled by the same methods, under somewhat more restrictive conditions
on the coefficients.

Proposition 3.4.1 Suppose that a < —%, k> 35+1 k€N, and set either
F@&) = floe0 0 <21 < @0, 0 < 8 < tmax = 21/2, 0r f(E) = flug, 00
0<2x9 <z <o, 0 <t < tmax = x1 — 222. Under the hypotheses €1)-%5),
there exists a constant Cs depending upon x1, C1, n, N, k and «, as well as upon
the “error function” ¢ and the boundary manifold 9M, such that for all f satisfying
f(0) € H}COC and for all 0 < t < tax We have

t
||f(t)]|2jﬁ€a(M11_2t) < Oy <Hf(0)|2jﬁ€a(Mwl)+eC2t/o oCa(t—s) (Ha(s)Hiﬁg(Mﬁ_zs)

2
I oy, )5 (3.4.20)

Remark: The condition & > n/2+ 1 is needed to derive a C weighted control
of the solution; there are no restrictions on k if we have at our disposal an a
priori C7 weighted bound for f. In such a case, for k < n/2 4+ 1, the inequal-
ity (3.4.20) should be modified by adding a term Hf(s)H?%,%(MIrQS) under the

integral appearing in (3.4.20).

PROOF: We are mainly interested in small values of xo, with eventually x-
tending to zero, otherwise the estimate is standard. Keeping this in mind, let
X* be the “energy-momentum vector density”,

Xt= N a2 G B DPp), + (27, ELPPy),}. (3.4.21)
0<|BI<k

Suppose, first, that f(0) € H,lffl; standard results [39, Vol. III] show that
f(t) € H°,, and we then have*

VHXM:N1+D1+D2+E1+E2+E3 , (3422)

5Note that 0Nz, ,2,, 7 do not need to be non-timelike in the Lorentzian metric g sense,
however, both definitions of terms such that “non-timelike” or “causal” will coincide in our
applications.
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where
Noo= ) (260 —2a— Va0 GPy (ELO,2)2Py),
0<|8|<k
Dy = 2 Y @ ugls BYY 900,
0<|8I<k
Dy = 2 Y a7 'PPugly ELY, %),
0<|BI<k
E"o
By o= ). (251—2a—1)x*2a*1+2ﬁ1<9%,ﬂ@%g,
0<|8|<k
By = Y a M 9Pe (DEM)D),
0<|8|<k
By = Y a2 '049% (D,EY)2%), . (3.4.23)
0<|8I<k
Since 2a + 1 < 0, from (3.4.12) one finds that
/ Nydzdv < —2a+ 1e|[¥]? .. (3.4.24)
Emz,ml,s «% 2

which is strictly negative for ¢ # 0, and can be used to control some of the error
terms which occur at the right hand side of (3.4.22). (Here we have used the

form (3.2.4) of H@Z)H;M% .) For example, to control E3 we take any x3 satisfying

k
2x9 < x3 < x; — 2s (we will make a more precise choice of x3 later), and we
write

/ Esdrdv = Es3;+ Es»,
Ezg,zl,s

B3, = / Esdxdv
Yag,wy,s M{z>2s}
E3o = / Esdzdy .
Sag,wq,s (M{z<z3}
By (3.4.15), E55 can be estimated as follows:
Bl < 3 C(a)e 2220 2Py du dv
0<p<k ” Tag.ey,s ({r<zs}
(2a + 1)

IN

e T A)e 2
10 ||w||%a+% b

if x3 is chosen small enough. Once this choice has been done, we can clearly
estimate E3 1 as

E31 < CllY)3

with some constant which is determined by x3. The integrals of the error terms
E, and Ej are estimated in the obvious way, cf. (3.4.12) and (3.4.14):

/ (E1+ E2)dxdr < C’ng(s)H%a .
Exg,:cl,s
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To control the terms D; and Dy we use the evolution equations (3.4.5):

B, 7% = 9UEIY,0) + (BT, Pl
= —P°(Lp + By + Bio — a) + [ELY 2P

= —L9%+ 2%+ EY (3.4.25)
B} = —[2° L]y +E"Y,, 2°lp — 2 (Bug + Buy) ,
EYY, 9% = L9+ 9P+ EL, (3.4.26)
Ef = [2°Llp+ [EXY . 271 — 2° (B + Bagy)) .

Integrating Dy + Do over ¥, », s, one finds that the terms containing L.@Bw
and —LT2%p in (3.4.25) and (3.4.26) cancel out; the terms containing 2”a and
PPb are estimated as

22/

—2a—1+25 (<@ﬁ%@ﬁa>l n <9ﬁ¢,@ﬁb>2) da dv

10
T at e

2 1
e o2 .

< llgl%a + Ha!@@a

m

The terms containing the commutators [2°, L]y) and [2°, LT]p, can be esti-
mated using the weighted commutator inequality (3.2.35), while the By, Bia,
etc., terms can be estimated using (3.2.34), by an expression of the form

2 1
e <||w||§fka+||sou§@ ol [ ) (3.4.27)

To estimate the commutator terms arising from EY, we note that for |3] > 0,

B1 [Eiampﬂ]x — BlEA&gl [3 Xﬁz . “XTBT:IX
=Y clo. B (DB (D)
o+6=0
= FE¢+ E7.

The hypothese (3.4.13) imply the terms in 0;x vanish. Then the difficult term
in E7 is
= — > o,8)z7 (D EL)z" (D°0,x) .
o+0=0

The terms arising from E¥ in (3.4.25 - 3.4.26) can again be estimated as in
(3.4.27) provided that x0,E* ,04E* € gklfl, that 20, EF ,04E% € %Sfl, and
that (3.4.15) holds. Summarizing, we have derived

/E VXt < OC) <||a<s>||§@a+||b<s>||;a_% +||w<s>||%a+uso<s>||§fka)
T9,T1,8

) (3.4.28)
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Stokes theorem,

/ D, X"d"pdr = / XHdS,, ,
QZQ,:L‘l,t 89321,%2,15

and our hypotheses on the geometry of the problem lead to

1700z < (15O + 1 [ (lale) e + OEyavs + 17625 ) ds) -

Gronwall’s lemma establishes (3.4.20) on the family of hypersurfaces £, ., ; for
f(t) € Hiee,. If f(t) € Hj°, we approximate f(0) by a sequence of functions
fn(0), with f,(0) € Hi%¢, converging to f(0) in J#,(X4,q,.), and we solve
Equation (3.4.2) with initial data f,,(0). The inequality (3.4.20) applied to the
functions f,,(t) — fm(t) shows that f,(t) is Cauchy in J#; passing to the limit
n — oo the desired result for f’s such that f(0) € H.° easily follows.

Since all the constants above are z9 independent, an elementary argument
using the the monotone convergence theorem shows that the inequality (3.4.20)
for the 3, +’s follows from the one for the ¥, ;, +’s by passing to the limit
zo — 0. |

3.4.2 Estimates on the time derivatives of the solutions

The hypotheses done in the previous section ensure that we can algebraically
solve Equation (3.4.2) for 9, f, and then recursively obtain formulae for 9% f.
Under the hypotheses of Proposition 3.4.1, it is then straightforward to obtain
estimates on the norms

(@0 Dl 50y s 0SSk,

provided suitable weighted conditions are imposed on the 7 derivatives of the
coefficients of Equation (3.4.2). However, we would like to obtain derivative
estimates without the x factors, uniformly in 7. Clearly a necessary condition
for the existence of such estimates is that

12 ) Ol see (5, <00, 0<i<k. (3.4.29)

It turns out that (3.4.29) needs not to hold for arbitrary initial data f(0) € J4°,
and the requirement that it does leads to the j-th order compatibility condi-
tions: by definition, these are the conditions on f(0) which ensure that Equa-
tion (3.4.29) holds for 0 < i < j. Since, for solutions of Equation (3.4.2), all the
derivatives 9% f(0) can be explicitly written as an i-th order differential operator
acting on f(0), the compatibility conditions are conditions on the behavior of
the initial data f(0) near the “corner” x = 0; we shall therefore sometimes refer
to them as “corner conditions”. We note that there can be corner conditions in
weighted Sobolev spaces, or in weighted Holder spaces; in this section we will
be mainly interested in the latter, defined by Equation (3.4.33) below.
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The following example is instructive in this context: For 0 <t < y let g be
a solution of the two dimensional wave equation

0? 0?2
<8_t2 _ —(93/2) g=0, (3.4.30)
with initial condition
Jg
= 20y t! = =2 1)y~
g’tzo Yy |, = 2@+ 1y,

for some constants C, « € R. From Equation (3.4.30) we can obtain a system of
the form (3.4.5) by introducing 7 =t, x =y —t, ¢ = (g, (0r — 203)9), ¥ = O-g,
and setting L = 0, E9, = 0; ®id, E!.0,, = (0; — 20,), so that we have

o (o e )= (0) = (0)

(0 —20,) = 0.
The solution is

g = C+DE+)" +(C -1y -1
= (C+1)@2r+2)* +(C -1z .

It follows that for each 0 < 7 < 1, k € N, and 8 < a + 1 we have g(7,-) €
%f ((0,10]), consistently with Proposition (3.4.1). Somewhat surprisingly, for
7 > 0 and for all i € N the functions 9.g(,-) are smooth in z up to =z = 0.
However, the L™ for bound 9%g(7,-) blows up as 7 tends to zero except in the

case
C=-1. (3.4.31)

Condition (3.4.31) is precisely the corner condition needed for 9,¢(0,-) to be
better behaved than 0,¢(0,-) at z = 0. In the example under consideration the
fulfillment of the first order corner condition guarantees already that all the 7
derivatives of g will be well behaved, but we do not expect this to be true in
general.

Let us pass to a derivation of the desired estimates. We shall use a method
which avoids the use of weighted Sobolev spaces; the price one pays is the need
to consider systems somewhat less general than (3.4.5), but still general enough
for our purposes. More precisely, in this section we restrict our attention to
systems of the form

Orp + By + B2y = Liig+ Loy +a, (3.4.32a)
1Y+ Bo1p + Bogtp = Loip + Lootp + 0, (3.4.32b)

with
er) = (0r — 20,)0 .
We assume that the Lg’s, a,b = 1,2 are first order differential operators of the

form
Loy = Liy0a + 217,07 + xL%0, (3.4.33)
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with bounded coefficients L,: no symmetry hypotheses are made. Clearly the
intersection of systems of equations satisfying (3.4.32) with those of the form
(3.4.5) is non-empty. (As we will see in Sections 3.5 and 3.6 below, non-linear
waves equations on Minkowski space-time can be written in the form (3.4.32).)
In particular Proposition 3.4.1 provides a large class of solutions of (3.4.32) such
that

(o, ¥)(7) € A (Ma,—27) C Cf* (Mo —2r)

for £ < k—n/2. We shall therefore assume that a solution f = (¢, ) satisfying
f(r) € € (My,—2-) is given, and study its 7-differentiability properties. For
this purpose it is convenient to introduce a space ‘@‘Tp(ﬁ) defined, for p < ¢, as

the space of functions f in Clgﬂ) such that the norm

— —« i oy ak
1 fl6g, (@ = sup > a”|(20)" (20r ) 2,07 f|
0<i+j+k+|y <t
0<k<p
is finite. Similarly one defines ‘5;';;’8 () using the norm
[ /lligz.0(0) = sup > (1+| Inz|) P20 |(20,) (20, ) 205 f| .
P
0<i4j+k+|y|<?
0<k<p

Clearly %7 () = %;“I;O(Q). Remark: The spaces (@i’)ﬁ generalize the spaces

€ # which can be defined as the spaces of functions f such that 1+Inz|Pf e

Proposition 3.4.2 Let o < 0, ¢ € N, write 2 for €, 7, and suppose that
LY. Bu, € €0(Q), a € €2 ,(Q), b€ €2*(). Consider f = (¢,1) — a solution

ab’

of (3.4.32) satisfying
VT € [OaT] f(T) € Cgéa(MamfZT) .
Then:
1. For all € > 0 we have
(p,0) € €y (AN {z +27 > €})

in particular for any 7 > 0 the compatibility conditions of order p = |¢/2]
(the integer part of ¢/2) are satisfied by (¢(7),¢(7)):

V1<i<p = Op(r),0l(r) € 67 (M), (3.4.34)
Here 5 = |£/2] if « =0, and 3 = 0 otherwise.

2. If there exists 1 < p < /2, p € N, such that Equation (3.4.34) holds with
B =0at7T=0, then

(p,0) € 610 (Q) C 6P(Q) (3.4.35)

with 3 =p if @ =0, and 3 = 0 otherwise.
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Remark: The method of proof here gives a number of well controlled time
derivatives smaller by a factor 2 than the number of space ones. This is, how-
ever, irrelevant, when £ = oo, which is the main point of interest in this work.
We note that energy estimates as in the proof of Theorem 3.5.4 below provide
an alternative, more complicated way of establishing a stronger statement, with
more controlled time derivatives for large ¢’s.

PROOF: By rearranging terms and redefining the Lg;’s, the B,’s, and the source
functions a and b we may without loss of generality assume that

T —
ab:()

One can rewrite Equations (3.4.32) as z0;(p, 1) = a partial differential oper-
ator linear in xd, and 0,; by iteration this immediately yields (¢,%) € ‘Kfro.

Equation (3.4.32a) shows then that 0-¢ € %O‘_HO, hence ¢ € (52?1 On the other

hand, Equation (3.4.32b) gives e (¢)) € ‘5;1”0—1—‘5;‘__11, hence 0rey (¢) € nga—_2|10‘

Integrating Equation (3.4.32b) one finds

T+x/2
(v, 1) = Pz +2r, vA,O)—l—/ : ey (V) (20,0, T —v+1/2) dv . (3.4.36)
z/2

(We note that for each € > 0 the first term above is uniformly Cy on the set
QNn{z+27 > e} N{zr < x0}.) Differentiating Equation (3.4.36) one obtains

T4x/2
o) (x, v, 7) = O + 21,07, 0) + / drey () (20,0, 7 — v+ 2/2) dv ;
x/2

since a < 0 and O0re4 (V) € %;‘:2'10, straightforward estimations show that 0,1 €

CK;‘_%, hence ¢ € C@o‘_m if a £ 0, while ¢ € %0;1”1 when o = 0.

Let 6, =0if @ # 0 and §, = r when o = 0, and suppose that ¢ € CKX‘;?ZT'T

and 9 € Sa”ﬁa_f i for some 1 < r < (¢ —1)/2; we have already shown this to hold
for r = 1. Equation (3.4.32a) gives

a7ﬂ7‘ avﬁ'f‘
67—(,0 € Cgéfrfl\r = ¥€ Cgffr|r+1 :

It then follows from Equation (3.4.32b) that

»Pr 1 —1,6-
€+("¢) € Cg[a_f_”?« = a:+ 6+(¢) € nga_gr_ﬁgm .

Differentiating r + 1 times Equation (3.4.36) with respect to 7 we obtain

T4+x/2

O (o, r) = O (eran ot ) [T e () 20 0t Tk /) do
z/2

which gives 9ty € C@Oig;_mo, hence 9 € C@O‘_f "yjr+1» and the induction is

completed. O
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3.4.3 Polyhomogeneous solutions

Let Q2,7 be defined by Equation (3.4.1d); we shall denote by &’ (Q,.r) the
space of functions f defined on €2, 7 which can be written in the form

kN
.
YN @ W fij + farhore s

i=0 j=0

for some € > 0, some functions f;; € Cso(€2y,,7), and some sequence (N;) of
non-negative integers. We also require that fuyzsee € C2TROTE(Qy, 7). We set

4270(2 = ﬂkeNﬂkg .
The following properties are useful in what follows:

o If0 < 21 < m9—T/2, then a function f € C._(Qu, 1) is in &2 (Qyyr) if and
only if for any coordinate patch & of M we have [ € Mké(uxl), where

Uy, =]0,21[x0 x [0,T], and if f € Coo(Qint), where Qipy = Qg 7 N {x >
x1}.
e For all € > 0 we have €20+ 28 %5; in particular €5, C 52/05;

e It does not hold that fssz‘s C €2, however, for all € > 0 we have fssz‘s C
C5°- More precisely, if f € Jz{,f, then there exists p € N such that
(1+|Inz?)"P2f € €.

e As before we assume that 1/§ € N, which implies m&%,f - ssz‘sﬂ /s C dk‘sﬂ .
. 427,3 is stable under multiplication: if f, g € 272, then fg € Jka(s.

° szk‘s is stable under differentiation with respect to 7 and to v, as well as
under z0,: if f € ssz(s, then O, f ,X; - f (i > 2), 20,f € /2, with the
vector fields X; defined in Section 3.2, ¢f. Equation (3.2.7).

In this section we will consider systems of the form

Orp+ B1ip+ Bioyy = Lijp+Lisv+a, (3437&)
Op) + Bo1o+ Bogp = Lot + Lasp + b, (3.4.37b)

with the L;;’s, ¢,j = 1,2 of the form

Lij = LAda + L7,0; + xL%8,, (3.4.38)
with
Y ed®ad |, L LK, Lh e . (3.4.39)

No symmetry hypotheses are made on the matrices Lf] Conditions (3.4.37a)-
(3.4.39) are easily seen to be compatible with those made elsewhere in this
paper, cf., e.g., the proof of Corollary 3.4.4 below. The reader is warned,
however, that the operators L;; here do not coincide with those in (3.4.32): to
bring (3.4.32) into the form (3.4.37) one needs to multiply Equation (3.4.32b) by
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—1/2, transfer the operator 0, from the left- to the right-hand-side of (3.4.32),
and appropriately redefine the Lo;’s.

We start with the following result, which assumes that the solutions have
both space and time derivatives controlled, in the sense of weighted Sobolev
spaces:

Theorem 3.4.3 Let 3, 3 € R, k € NU {cc}, and let (p,1) be a solution of
(3.4.37) in ‘Kfol(on,T). Suppose that (3.4.39) holds, and that

B € (o) N L%) (1) Big, Bag, Boy € A3 (Qye ) , (3.4.40a)
a,b € 2P A2 (o 1) ©(0) € 2P (My,) . (3.4.40b)

Then
S (xﬁ%é + 'Q{k(s) (Quor) s Y E (fﬁ“ﬂké + 55@71@5) (Qo,7) + Coo(Quo,7) -
If one further assumes
L5, B2, a,p(0) € L>®(Qy 1)
then it also holds that
pe (ﬂ%‘s N L°°) Qo 1) -
PROOF: It is convenient to decompose Bjj in the obvious way as
Bii = By + By

with BY; € 20472 | and BY; € Cwo. We rewrite (3.4.37) as

oo+ By = ¢, (3.4.41a)
Ot = e, (3.4.41D)
where
c1 = L11g0 + L2y + a — Bioty) — Bfl(p , (3442&)
Cy = L21g0 + L22¢ + b— Bgl(p — 3221/} s (3.4.42b)

In what follows we let € > 0 be a positive constant, which can be made as
small as desired, and which may change from line to line. We note that c¢s is in
2+ 27272 and integration in z of (3.4.41b) gives

Y=o + Vg i1—c + VYphg
where

0, otherwise,

bol) = {hmwo P(z,), iff+1-€>0,
with

$o € CooQuo1) s U1 € EET (o) s Ypng € 27 P (o)
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hence
e Co+E2H 4 270

Since L11p € %£+5_6 (Opp € CKOBOI_I and zL{; € mfk‘s N 5565 C ‘5;50; similarly for
the other derivatives), we find that

¢ € )+ 2Pt + €0+
We can then apply Proposition 3.3.4 to (3.4.41a) to conclude that
o e +aPat) + €2 Pc (3.4.43)

with p = 1. Coming back to co we find now that cy € ssz(s + a:ﬁszf,f + %oﬁc’)%p&—e,
and by Proposition 3.3.6 we obtain

¥ € Coo + 1) 4+ P+ 070 4 P HPot1—c (3.4.44)

still with p = 1. To conclude, we proceed by induction; let 8 + pd < B+ k
and suppose that Equations (3.4.43)-(3.4.44) hold; it follows that ¢; € @’ +

xﬁ,ﬁsz‘s + %oﬁolﬂpﬂ)é_e . Applying Proposition 3.3.4 to (3.4.41a) gives (3.4.43)
with p replaced by p + 1. It follows that ¢y € 52/,3 + xﬁdké + %O%HPH)(;_E;
Proposition 3.3.6 applied to (3.4.37b) gives (3.4.44) with p replaced by p + 1,
and the result is established. O

As a straightforward consequence of Theorem 3.4.3 we obtain:

Corollary 3.4.4 Let §' € R, let (p,9) € Cég(Qggo,T) be a solution of the system
(3.4.5), and suppose that

Bij, B, By, 0,01 04, (N € o2 (Quy 1) (3.4.45a)

ET and E% — invertible, with (E7)~! (E%)~t € o2 (Qyy 1) (3.4.45b)
(BT)E® € 2 () NEY) Vo), (BT)'EA € 2% (),

(3.4.45¢)

(ET)"Y(B11 + B-) € L®(Quy 1) - (3.4.45d)

a,b € 2 (1), 9(0) € 27 (My,)
with 3 € R, then

o € (2P + ) (Quor), v € (27 + 2 ) (Quosr) + Coo( @) -
In particular, if & = oo then the solution is polyhomogeneous.

PROOF: : We write Equation (3.4.5) as

Orp 4+ (ET) "M {(Bi1+ B)p + W}y = (E7) Y ELdip — (2049 + a)

Ou = (7)) {llo = (B + Bo)v} = (BD) ™M ((¢4) 0ap + ET0r + E0a +b)

(3.4.46)
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which is of the form (3.4.37), and we note that the hypotheses made on the
coefficients of Equation (3.4.46) imply those of Theorem 3.4.3. 0.

An unsatisfactory feature of results such as Theorem 3.4.3 is that uniform
estimates both on space and time derivatives of the solutions are assumed.
Recall that uniform time derivatives can be obtained only if corner conditions
are satisfied, and the hypotheses of Theorem 3.4.3 require an infinite number
of those to be fulfilled. The same techniques can be used to obtain various
expansions of solutions when a finite number of time derivatives are controlled
only, but the statements turn to be out somewhat less elegant. We give an
example of such results when § = 1:

Theorem 3.4.5 Let 5 € R, k € NU{oo}, and let (i, 1)) be a solution of (3.4.37)
in %ﬁ(ﬂxmqﬂ) for some ¢ > 1. If Equations (3.4.39)-(3.4.45) hold with § = 1, then
for any A < 1 we have

-+
p e (:Uﬂ,gz{kl + ‘Q{kl + ﬂ572j7220<ﬁf_—;§t2) (onj) ,

b e (:rﬁH;z%kl Vol + ﬁg_gj_lzo%ﬁ_zzilfr)\) (Quo1) + Coo(Qug 713.4.47)
If one further assumes
L5, B2, a,p(0) € L®(Qy 1)
then it also holds that
Q€ (:Bﬁészl + N L™+ ﬂe_zj—oncgf,gt/g\) (Qa,7) -

PrROOF: The result is obtained through a repetition of the proof of Theo-
rem 3.4.3, keeping track of the differentiability of the remainder terms. O

We are ready now to prove polyhomogeneity of solutions of the Cauchy
problem for Equation (3.4.5). We consider only the simplest case of equations
satisfying the conditions (3.4.48) below, considerably more general statements
can be proved using similar methods. The differentiability hypotheses below
are clearly satisfied by equations with smooth bounded coefficients; however,
they also allow for a wide class of equations with polyhomogeneous coefficients.
We restrict ourselves to the case in which the corner conditions are satisfied to
arbitrary order; if not, one obtains expansions as in (3.4.47), with a remainder
in which a finite number only of time derivative are controlled; such results can
be proved by identical arguments, compare the proof of Theorem 3.4.5.

Theorem 3.4.6 Consider a solution (¢,?) € Co X Coo of the system (3.4.5),
suppose that in addition to (3.4.12), (3.4.13), (3.4.19), and (3.4.45a) we have

Bi1, B, B}, 0,07 € L%®(Quy 1) , (3.4.48a)

E" = oreid, EY = 0-—20,)@id, (3.4.48b)
i-pf| EL-BL| € 2073 (o 1) (3.4.48c)
EA € 2l (Quy 1) - (3.4.48d)
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If
a,be a:ﬁdk‘s(Qx07T) , »(0) € mﬁszf,f(MxO) ,

with 8 € R, and if the initial data satisfy corner conditions to arbitrary order, in
the sense that ‘ A
VieN  0ip(0), 0i(0) € €2 (M) (3.4.49)

for some (i-independent) A € R, then
o€ (O + ) Qo) € (A +2R) (Uuoir) + Coo Qo) -

In particular, if £ = oo then the solution is polyhomogeneous.

Remark: The class of initial data satisfying corner conditions to arbitrary
order is rather large; for example, if an initial data set (¢(0),(0)) satisfies
them, and if f, g are arbitrary functions smooth up to boundary on the initial
data hypersurface, then (¢(0) 4+ f,1(0) + g) will also satisfy those conditions.
More generally, large classes of such initial data can be constructed using a
polyhomogeneous generalization of the Borel summation lemma.

PRrROOF: The hypothesis (3.4.49) with ¢ = 0 and Proposition 3.4.1 show that for
all 7 € [0,7] we have

P(7), V(1) € C(Myyp2) -

Proposition 3.4.2 shows then that the hypotheses of Corollary 3.4.4 are satisfied,
and the result follows. O

3.5 The semi-linear scalar wave equation
Let f be a solution of the semi-linear wave equation
Ogf = H(z", f), (3.5.1)

here Oy is the d” Alembertian associated with g. Set

(n—1)

f="7 f; (3.5.2)
Letting g = Q%g as in (3.1.1), from (3.1.3) we obtain
~ n—1 - R - _n+3 n—1 ~

Let g = 1 be the Minkowski metric; under the conformal transformation (3.1.4)
one obtains from (3.1.5) that g is again the Minkowski metric, and (3.5.3)
becomes . L L

0,f =Q T Hz" Q" f) . (3.5.4)

We shall assume that the initial data for f are given on a hypersurface ¥ C .,
which, in a neighborhood & of #7 is given by the equation

yno={y = %} : (3.5.5)
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This correspond to a hyperboloid in .# given by the equation 2941 = /1 + 2.
It is convenient to introduce the following coordinate system (z,v,7) in a .-
neighborhood of #+:

T = y'—1/2>0,

ro= (-4 >0,

vo= Qo)) (3.5.6)
ni(v) € "1, with v = (v4) denoting spherical coordinates on S"~!. Equa-

tion (3.1.5) gives
Q=z2r+2+1)~z. (3.5.7)

If we let h denote the unit round metric on S™~!, we then have

n = 2dzdr + da® + (x + 71 +1/2)%h (3.5.8)
and
- 1 -
a,f = b, + 74+ 1/2)" " det h n*d,
77f ($+T+1/2)n_1\/m M((x T /) € n f)
n—1 yAVA
= =00, = 20:) + 4—7‘~|—1/2&'ﬂL ($+T+1/2)2}f’ (3.5.9)

where 2\, is the Laplace-Beltrami operator of the metric h. We set

e.=0., ey =0;—20,, (ac+7'+1/2 ha (3.5.10)
¢ =e(f), ¢+ = €+(Jf) (3.5.11)
Pa=1a= m a(f), (3.5.12)

where h4 denotes an h-orthonormal frame on S"~!. We use the symbol D to
denote the covariant derivative operator associated to the metric h. (The use-
fulness of introducing two different objects for h(f)/(z + 7 + 1/2) will become
clear shortly.) Equation (3.5.4) implies the following set of equations:

e*(¢+) *DeAwA - x+7+1/2 ¢+ = m¢ +ay 7(3 5. 13)
—ea(dy) +ei(Ya) m@m = ba
e—(¢a) —ea(o-) +m¢m
14
Dey¢a +er(o-) +2(x+7'+1/2 - = m¢+ + b— ) (3 514)
—(f)~: ¢, (3.5.15)
er(f) = o+, (3.5.16)

with a4 = by = 0 and

L =b.=-G=-Q " H@EH Q" f). (3.5.17)
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3.5.1 Existence of solutions, space derivatives estimates

We note that the partial differential operator standing on the left-hand-side of
(3.5.13) is symmetric hyperbolic; the same holds true for (3.5.14), or for the
joint system (3.5.13)-(3.5.16). Now, part of our technique consists in deriving
weighted energy estimates for symmetric hyperbolic systems having the struc-
ture above, c¢f. Section 3.4. Each such system comes with his own estimates, so
that for the systems (3.5.13) and (3.5.14) we can obtain estimates with different
weights. This allows us to handle a reasonably wide range of non-linearities,
giving existence and blow-up control for initial data in weighted Sobolev spaces
(with conormal-type blow-up at .#1):

Theorem 3.5.1 Consider Equation (3.5.1) on R™! with initial data given on a
hyperboloid . D ¥, o in Minkowski space-time, and satisfying

> n—1
f|EIU»OEQ_Tf|EIO,O € H51(Za00) (3.5.18)
n—1 o
0:(QF Plsso € C5(Sa00) N AP (S000) s (3.5.19)
n—1
0-(Q7 7 fllssgo € I (Zan0) s (3.5.20)

with some k > 5 + 1, =1 < a < —1/2. Suppose further that H has a uniform
zero of order £ at f = 0, in the sense of (3.2.30), with

4, n=2,

52{3, n=3, (3.5.21)
2, n>4.

Then:

1. There exists 0 < 7+ < T (< x0/2), depending only upon x( and a bound on
the norms of the initial data in the spaces appearing in Equations (3.5.18)-
(3.5.20), and a solution f of Equation (3.5.1), defined on a set containing
Q4,7 satisfying the given initial conditions, and satisfying

111 Lo (9., ) < 0O -

2. Further, if 7, is such that f exists on €, -, and satisfies Hﬂ|Loo(Q
then for 0 < 7 < 7, we have

)<OO,

T, T*

ﬂszoﬂ' € Loo(zxoﬂ') N %ﬂo—é‘rl(zxoﬂ') )

~ ~ a—1 o
an’E(L'O,T € <%0g<2:1'077—> ’ azf‘zwo,T € % ? (253077—) m%o (Z$07T) .

Remarks : B
1. Integration in x of condition (3.5.19) implies that f € L (34 0).
2. Some further information can be found in Theorem 3.5.3 below.

PROOF: As before, we write || f(7)|p for |[fls,, .|z s,, ). etc. Recall that
the standard theory of hyperbolic systems (cf., e.g., [39, Chapter 16, Vol. I11]7)
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shows that for any 0 < z1 < z¢ there exists T'(x1) > 0, satisfying 2x1 + T < o,
and a solution f of (3.5.4), defined on Qg 4, 7, with initial data on ¥,
obtained from those on X, by restriction. The idea of the proof is to derive
xr1-independent, weighted a priori estimates for the solution. These estimates
will guarantee that the existence time 7T'(z1) does not shrink to zero as x; goes to
zero; they will also guarantee that the weighted Sobolev regularity is preserved
by evolution. We start with the following:

Lemma 3.5.2 Under the hypotheses of Theorem 3.5.1, consider on €, ., 7 the
system (3.5.12)-(3.5.16), set

Eo(t) = Hf(t)\@zﬂaﬂ\ —(®)50
+|¢(t) H2 . +ZH¢A e - (3.5.22)

1
Then there exists a x1-independent constant C' such that
E,(t) < C {Ea(m + /O t eo(t_s)S(s)ds} : (3.5.23)
where
ZII@A Noee + llat(s )Hi&mxz

+lo—( H2 o 1/2+Z||bA Dl (3.5.24)

PROOF: We wish, first, to apply Proposition 3.4.1 to the system consisting of
Equation (3.5.14) together with e_(f) = ¢_; in order to do this we set

(7 _
SD_<¢A>7 7/1—<l57

We choose E0, = ex ®Id, we set

Ly = ( ej(w) > , (3.5.25)

and we define

Ea(t) = IF D130 + le— (N ()15 + Z lea(F)(®) 13 -

The hypotheses €1 — €5 of Proposition 3.4.1 are readily verified, and for any
a<—3 the inequality (3.4.20) gives

Ea(t) < C{Ea(0)60t+/0 e (Jlay (s)]%a

1o (2o + 3 164S)[2pary2) ds} . (3.5.26)
A
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Next, we consider (3.5.13)-(3.5.15) as a whole; to apply Proposition 3.4.1 we

take _ _
f f
e=1 o+ |, Y=\ va | - (3.5.27)
ba o
We set again E 9, = ex ® Id and
0
Lw = —DeATPA )
—ea(¢-)
hence
0
LYo = ealoy)
DeA(Z)A
We define

Eq(t) = [F®I kcﬂrlle—(f)(t)ll2 of

Hle+ (DO + > H@A(f)(t)lliﬁa/ :
A

and write (3.5.13)-(3.5.15) in the form (3.4.5), with all the terms linear in ¢_
and ¢4 in (3.5.13)-(3.5.14) transferred to the left-hand-side. The hypotheses
of Proposition 3.4.1 hold again, and for any o/ < —1/2 it follows from (3.4.20)
that

t
Eult) < G{Ea«me% et (ZHaA(s)H? S G
A k

+la ()] o +y HbA(S)IIi%a/lm) dS} : (3.5.28)
A

We set B R
E(t) = Ea(t) + Ea—1/2(t) :

It follows from (3.5.26) and (3.5.28) with o/ = a — 1/2 that we have
t
E(t)<C (E(O)eCt + / eCt=3)(B(s) —|—S(s))ds> , (3.5.29)
0

with S(s) as in (3.5.24). Equation (3.5.23) with E, replaced® by E follows now
from Gronwall’s Lemma. Since E,, is equivalent to E, our claims follow. O

Returning to the proof of Theorem 3.5.1, Lemma 3.5.2 applied to (3.5.13)-
(3.5.15) gives

t
Ea(t) < 0 (B + [ OO ) . (3530
0 k

5The constant C' in Equation (3.5.23) does not necessarily coincide with that in (3.5.29).
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By hypothesis the function H appearing in (3.5.1) has a uniform zero of order
¢ > 2, in the sense of (3.2.30); we wish to use (3.2.31) to control the term
containing G(s) in (3.5.30). This requires an L> bound on f, which will be
obtained next. As k > n/2 + 1, the Sobolev embedding (3.2.24) gives

le- (PN + ler (DN avz + lealF$)llip < CEals).  (3.531)
Now the conditions (3.5.21) on n and ¢ give
G()] < CIF ()50 275 5" < O (7)o 22,

so that (recall that o < —1/2)

IG() g < CIF T - (3.5.32)
From (3.5.13) we have
n—1 n—1
Orp4 — m¢+ = De, s — m¢— -G, (3533

and (3.5.32) together with Proposition 3.3.1 yield

o+ (@)l < Ce“) o4 (0) g

t
+C/O I ([ Deypa(s)ligg + lo-(9)lwg + 1G(s)llwp) ds

t ~
< OOl + [ IO 10 i)ds . (3534

for some continuous function C(E,(+),||f(-)||ze). Integration of Opf = %(gb_ -
¢4 ) over [x, o — 27| gives

~ ~ 1 xro—2T
Fra)| < I = 20 4 5 0- —0)(llep [ sds.

xT

For any 0 <7 < 7, < xo/2 the f(7,29 — 27) term is estimated by a multiple of
the initial energy in a standard way, which leads to the estimate

If()lze < CEa(r) + Ce|61(0) |55

+/ “TIC(Ba(s), [If(s)[z=)ds . (3.5.35)
0
Next,
n—1 =
1G] yporr2 < ClIH (8,522 facrjzrngs

and our hypothesis that H has a uniform zero of order ¢ together with (3.2.31)
gives

IG ) -v2 < C (IF6Maoe ) I gz gt
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In view of (3.5.35) this can be estimated by a function of E,(s) and of || f(s)|| e,

1GNP ars < C(IF=) 1F6)l20

k

< C(IF(s)ll=) Eals) (3.5.36)
provided that
n+2
> . .
bz — (3.5.37)

(which coincides again with (3.5.21)). If (3.5.37) holds, from (3.5.30) and
(3.5.35) we obtain

IF) e+ Ba(r) < O (Ea(0) + [0.F(0) g + 10 FO)lLre

+/OT @ (v, | F(8)li=, Eals)) ds . (35.38)

for some constant C, and for a function ® which is bounded on bounded sets. It
then easily follows that there exists a time 74 and a constant M, depending only
upon zo and a bound on the norms of the initial data in the spaces appearing
in Equations (3.5.18)-(3.5.20), such that || f(7)||z~ and E,(7) remain bounded
by M for 0 < 7 < 74. Since all the objects above were xi-independent, so is 7.
By the usual continuation criterion (cf., e.g., [39, Proposition 1.5, Chapter 16,
Vol. II]7) the solution exists on Qzy 2, for all xy; it thus follows that the
maximally extended solution of the initial value problem considered here exists

on a set which includes Qg -, .

To establish point 2, suppose that a global a-priori L*® bound on f is
known. Then (3.5.30) and (3.5.36) give a linear integral inequality on E,, and
Gronwall’s Lemma gives a global bound on E,. Arguments of the last part of

the proof of point 1 yield the result. O

For the purpose of estimating time derivatives of the solutions we will need a
generalization of Theorem 3.5.1. There are lots of ways to relax the hypotheses
thereof; for simplicity we shall only make those generalizations which are strictly
necessary for the arguments in the next section to go through. First, the fact
that f is scalar valued plays no role in our considerations above; henceforth we
assume that f has values in RY for some N > 1. Next, the definitions (3.5.10)
of ex and ey will be kept, as well as those of ¢4 and ¥4 given in (3.5.12). We
will consider systems of the form

P<i>+<g; gz><z>_<z>+G, (3.5.39a)
o= < zz> , @z):(z;) (3.5.39b)

"In that reference symmetric hyperbolic systems on a torus are considered; however simple
domain of dependence considerations show that the results there apply to the setup here.
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together with

e—(f) = Bop—+Bif, (3.5.40a)

er(f) = o+, (3.5.40D)

for some matrix valued functions By, B1, with By — invertible. Here

o €_ EADA
P_<(£A)tDA o > (3.5.41)

is the (geometric) principal part of Equations (3.5.13)-(3.5.14). The nonlinear
term G = G(z#, f) will be labelled as

G = (G6+(¢—)7Ge+(¢A)7Ge_(¢A)7Ge+(¢_)) ) (3.5.42)

with the order of the components following that of Equations (3.5.13)-(3.5.14).
The Bgy’s will be labeled as By_ 4., By_ ¢,, etc.; for example, in this notation,
the second of Equations (3.5.14) takes the form

6+(¢_) = D€A¢A - B(;S_,(;&_(b—
—B¢_7¢+¢+ — Bgi)_,d)A(bA — Bd)—ﬂ/)AwA +b_ + Ge+(¢_) R (3.5.43)

with actually B¢77¢A = B¢77¢A =0.

Some effort will be needed to prove the information of point 3 of the theorem
that follows; this is needed to be able to iteratively apply that theorem in the
next section:

Theorem 3.5.3 Consider the system (3.5.39)-(3.5.40) with

la(m) Lo + ()l + sup [|Bap(7) 0

a,b=1,2
+Bo(7)llg0 + 1By ()| zoe + [ Bu(T)ll g0 < C, (3.5.44)
for some constant C, and suppose that
G(zt, f) = Q2 H (g1 Q=12 f) | (3.5.45)

with G._(4,) = 0, and with H having a uniform zero of order £ in the sense of
(3.2.30), with ¢ satisfying (3.5.21). If the initial data satisfy (3.5.18)-(3.5.20) with
some k> 5 +1, =1 < a < —1/2, then:

1. The conclusions of point 1. of Theorem 3.5.1 hold with a time 7 depending
only upon the constant C'in (3.5.44) and a bound on the norms of the initial
data in the spaces appearing in Equations (3.5.18)-(3.5.20).

2. The conclusions of point 2. of Theorem 3.5.1 hold.

3. Under the hypotheses of point 2. of Theorem 3.5.1 we also have

I(z +27)0r fll 1= (0, ) < 00 - (3.5.46)
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Remark: The condition G,._(4,) = 0 can be weakened to
Ge_ (5. (@", f) - Q*(n+2)/2He_(¢A)(x,u’ Q(nq)/zf) ’ (3.5.47)

for some function H,_(4,) with a uniform zero of order ¢. Similarly it suffices
to assume that
Gy ) (@, ) = Q@ FDH, o (2, QO D2F) (3.5.48)

for some function H,, (y,) with a uniform zero of order .

PROOF: Let us start by remarking that, because ¥4 = ¢4, in Equation (3.5.43)
we can replace By_ ¢, by By_ ¢, +B¢_ 4, obtaining a system in which By_ 4, =
0. Proceeding similarly with the other equations we may thus without loss of

generality assume that
B y,=0. (3.5.49)

The proof of points 1 and 2 is then identical to that of Theorem 3.5.1, with the
following minor changes: Equation (3.5.33) is replaced by the equation

6_(¢+) + B¢+,¢+¢+ =
Deyda— Byr— g ¢— — By, g4+ a1 +Ge_(5,)  (3.5.50)

to which Proposition 3.3.1 still applies, recovering (3.5.34). Further, the equa-
tion &vf: (¢p— — ¢4)/2 has to be replaced by
Bop— — o+
- 5
and the desired conclusion is obtained by Proposition 3.3.3. The remaining
arguments do not require any modifications.

To prove point 3, from (3.5.43) we obtain

~ B1 ra
8xf+ 7f -

sl +2r)6 ] =
(ZL’ + 2’7’) (D€A¢A — B¢_7¢_(l)_
_B¢—7¢A¢A - B¢,,¢+¢+ +b_+ GBJF(QL)) , (3.5.51)

i From Equations (3.5.32), (3.5.34), and (3.5.40a) together with
- pa € 7 CC5,  De,dpa € %, CC
we obtain
er[(z+21)p] < Ca™@,

for some constant C' depending only upon the initial data and ||f]| Lo (Q)
Integrating as in the identity (3.4.36) we arrive at

By { (@ +20)(0:F = B f)(w,0,7) }
<|B;t {(:r; +27)0; f(x + 27, v, 0)} |+ C (HfHLoo(QW*) + C‘)

< C (10Tl + 1 FO) 2 @) + C)
and Equation (3.5.46) follows.

Ioﬂ'*)'
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3.5.2 Estimates on the time derivatives of the solutions

So far we have established existence of solutions with initial data in weighted
Sobolev spaces, as well as weighted estimates on the space-derivatives of the
solutions. The next step in proving polyhomogeneity is to establish estimates on
time-derivatives. Similarly to the linear case, the question of corner conditions
arises. In order to handle that, we introduce an index m, which corresponds
to the number — perhaps zero — of corner conditions which are satisfied by
the initial data. Next, the definition (3.2.30) of a uniform zero of order [ has
to be strengthened by adding conditions on time-derivatives: we shall require
that there exists a constant C' such that, for all p € RV, 0 <4 < min(k,[) and
0 <37 <m we have

We start with the following:

< Clp|"—*. (3.5.52)

8i+jF(T7 "y p)
optoTI

Theorem 3.5.4 Let N> m > 0, consider a solution f : §2,, -, — R of Equation
(3.5.1) satisfying N
[f Lo Qg r) <00,

and suppose that

0<i<m+1  0fls,, € Hhnii(Tan0) (3.5.53)
0<i<m  00ifls,, € G5 (Sa0) NN A (Sr00) « (3.5.54)

with some & > % + 1 and —1 < a < —1/2. Suppose, further, that H is smooth in
f and has a uniform zero of order £ at f = 0, in the sense of (3.5.52), with ¢ as in
Equation (3.5.21). Thenfor0 <7 < 7.andfor0<i<m, 0 < j+i < k+m—n/2
we have

(T + 2$)af]jaiﬂ210,f € LOO(E:EO,T) N %ﬁ-m-ﬁ-l—z‘—j(zxo,f) ) (3.5.55a)

L~ a_l
ol(r +20)0- V0L flss,, . € Hr 2 i (Sagr) NG5 (Sagir) - (3.5.55b)

and

0<p<k-n/2 [(r+22)0,P0" fls,, . € A5 ) (Sapr) . (3.5.56)

TQ,T
with 7-independent bounds on the norms.

The proof below actually proves the analogous result for the systems con-
sidered in Theorem 3.5.3; the same remark applies to Corollary 3.5.5 below.
Before passing to that proof, we note that an important consequence of The-
orem 3.5.4 is that corner conditions will hold at any time 7 > 0, regardless of
whether or not they hold at 7 = 0:

Corollary 3.5.5 Under the conditions of point 2 of Theorem 3.5.1, for any 0 <
T < Ty and for 0 <i <k —1-—n/2 we have

8:"?]210,7 E LOO(EIOJ-) m ‘%Co—[‘rl—i(zxoﬂ-) Y
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ai+1-ﬂzzo,7 € %g—i(zxoﬂ') ’
. a1 o
8x871—f|21077 € %c—i 2 (EIO,T) N Cg(] (2560,7') .
We shall need the following simple Lemma:

Lemma 3.5.6 Let F'(z*,p) be a function which is smooth in p at fixed z* and
suppose that it has a uniform zero of order £ > 1 in p. Then

1. For all i € N the function 9% (F(x*,u(x*)) has a uniform zero of order ¢,
when viewed as a function of (u,d;u, ..., 0%u).

2. Let H = 0,F, then H has a uniform zero of order / — 1.

PROOF: Let u = (u'); smoothness of F in p allows us to write
F(Z,7,u) = A, gu' .. u' (3.5.57)

with some coefficients A;, . ;, = A, ..i,(Z, 7, u) which are smooth in u, and totally
symmetric in 41,...,is; recall that the summation convention is used through-
out. Point 2 immediately follows from (3.5.57). From that equation we also
obtain
O-F(r,8,u) = (0:Ai. 4, + Ouidi. i,0- u) it
+€Allmuu“ RS VL

which proves point 1 for ¢ = 1. The result then follows by straightforward
induction. O

We can pass now to the proof of Theorem 3.5.4:

PROOF: We assume that Equations (3.5.39)-(3.5.40) are satisfied; Theorem 3.5.3
shows that (3.5.55)-(3.5.56) hold with ¢ = j = p = 0. Consider the vector-valued
function

(. (x +27)0- o, (@ + 27)0rp, 0, (@ + 27)0:4)) ;
we claim that it satisfies a set of equations of the form (3.5.39)-(3.5.40). Con-
sider, for instance, Equation (3.5.40a); set

f = (:E + 27—)an~7 ng = (1’ + 27—)8T¢* ’

etc., we have

e-(f) = o ((@+2r)(Bos- +B1)))

= Bod- + (2Bo + (¢ +27)0-Bo)—
+B1f + (2B1 + (z +27)0-B1)f ,

which is linear in f

(1) -

In fact

b 0).
(2B0—|— 33‘—|—27’)8BO BO)( >

0-
P
By
* 2B1 + (x + 27)0; By ’

ks k)
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and the new matrix By is again invertible, as desired. Next,

e-(¢4+) = O-((z+27)0-¢4)
= 0; ((x+27) (—Dada — By, 4_o—
—By 9,04 — By g, 0+ +ay + G67(¢+)))
= —Dada — Bo.s_0- = Bs,pa0a — Bo,o. 0+
+ linear(p,¥) + a4 + Ge_(q3+) ,
ay = —2Dpdpa+0ray €67, 1,
Ge_(¢3+) = O (Gef(m)) )

where “linear” denotes terms which are linear in the relevant variables. The
equation for e_ ((]3 A) is handled in a similar way. The equations involving only e
or J4 are straightforward, since those operators commute with multiplication by
(r+427). By Lemma 3.5.6 the new non-linearity has again a zero of order ¢, when

considered as a function of (f, (z + 27)0;f). In order to apply Theorem 3.5.3
we need to check whether the initial data are in the right spaces. Clearly

((x 4 27)0-£)(0) = 20, f(0) € ) C AL, N L™,

(890((33 n zT)an)) (0) = (an+ x8x87f> (0) € A0y C G N AN

Condition (3.5.20) requires some more work:

(0@ +20)0- 1)) (0) = (20-F +20%F) (0)

= (28Tf+ z(20, + e+)37f> (0)
= (2&?4— 220,0- f + ze (Boé— + Blf)) (0) .

The first two terms are obviously in J#%, |, and so is wey (B1f) = 2(0; —

20,)(B_f). Equation (3.5.43) gives

(zeq(d-))(0) = x(Deydpa— By ¢ ¢— — By 4, b+
—By_ 4404 — By_paha+b_+Ge s)(0).

The desired property (ze4 (Bo¢-)) (0) € 72, follows immediately; the only

non-trivial term is G, (g_), the %, | norm of which can be estimated

by a function of || f(0)]z~ and [ f(0)|se, . . ¢f Equation (3.5.36). Now,
(z+ 27')8Tf is uniformly bounded on €, -, by point 3 of Theorem 3.5.3, so
that we can apply point 2 of Theorem 3.5.3 to conclude that Equations (3.5.55)-
(3.5.56) hold with j = p = 1 and m = 0; straightforward induction establishes
Theorem 3.5.4 for the remaining j’s and p’s.

__Consider, now, m = 1; the result already established with m = 0 shows that
O- f(7) exists and satisfies (3.5.55) with ¢ = 1 for any 7 > 0; similarly (3.5.56)
holds with m = 1 for any 7 > 0. Now, a calculation similar (but simpler) to the

one done above shows that (]7, 0 f) satisfies a system of equations of the form
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(3.5.39)-(3.5.40) with initial data satisfying the conditions of Theorem 3.5.3 by
hypothesis; the uniform bounds on some interval [0,7;) follow by point 1 of
that theorem. We therefore have

H(f’ 8Tf)||LOO(QIOJ_*) < 00.

We can then apply the result already established for m = 0 to the system of
equations satisfied by (f,0;f) to obtain the conclusion of Theorem 3.5.4 with
m = 1. An induction upon m finishes the proof. O

3.5.3 Polyhomogeneous solutions

The aim of this section is to establish polyhomogeneity of solutions of a large
class of semi-linear systems of the form

Oro+ Brip+ B2y = Lup+Ligyp+a+Gy,, (3.5.58a)
O + Barp + Baatp = Lot + Loy +b+ Gy, (3.5.58Db)
with a nonlinearity
G= (Gw G¢)
of the form
G =z PO H (2t 9%y, 290 hy, 2 L) (3.5.59)
Here we have decomposed v as
U1 >
= : 3.5.60
v=( 12 (3560

this is motivated by different a priori estimates we have at our disposal for
various components of 1 in the applications we have in mind. Polyhomogeneity
of solutions of (3.5.1) will follow as a special case, see Theorem 3.5.10 below.
We will need to impose various restrictions on the function H, in order to do
that some terminology will be needed. We shall say that a function H (z*,u)
is d-polyhomogeneous in x with a uniform zero of order | in w if H is smooth
in u € RY at fixed o#, if H satisfies (3.2.30) for any 0 < i < min{l, k} and any
k e N, if

VieN O H(-,u)e (3.5.61)

at fixed constant u, and if we have the uniform estimate for constant u’s

Ye>0,M >0,i,k € N 3C(e, M,i, k) V]u| < M ||0;H(-,u)||<€k—s < Cl(e, M,i k) .
(3.5.62)
The qualification “in «” in “uniform zero of order [ in «” will often be omitted.
The small parameter ¢ has been introduced above to take into account the
possible logarithmic blow-up of functions in ;szo at © = 0; for the applications
to the nonlinear scalar wave equation or to the wave map equation on Minkowski
space-time, the alternative simpler requirement would actually suffice:

VM >0,i,keN 3C(M,i,k)V|u| <M |0LH(- u)|g < C(M,i,k),
(3.5.63)
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again for constant u’s. Clearly functions which are jointly smooth in v and in
x* satisfy the above conditions; Lemma 3.5.7 below provides another class of
such functions. The following simple facts about functions in the above class
will be useful:

Lemma 3.5.7 Let mi,mo,k € N, m; < mg, and let P(z",u) be a polynomial
inu=(ul,...u") of the form

P(z* u) = Z Pilml-j(x“)uil...uij ,

m1<j<mg
with coefficients P, (z") € M,f. Then:
1. P is d-polyhomogeneous in x with a uniform zero of order m;.

2. If
fedd+E)

for some A > 0, then for any € > 0 we have

P(-, 2% f) € 2™ (o + 65 -
The proof of Lemma 3.5.7 is elementary and will be left to the reader.

Lemma 3.5.8 Let k,q € N and let H(x*,u) be §-polyhomogeneous with respect
to x with a zero of order m in u. If

F ANL®+%%, q=0,
A+ €2, otherwise,

for some A > 0, then for any € > 0
H(a™ f) € o™ (e +627°) .
PRrROOF: We Taylor-expand H in u to order r, where r is any number satisfying
rqd > maqd + A .

We then have
H(z#,2? f) = P(a*, 2 f) + R,

where P is a polynomial and R is a remainder. We note that the coefficients
of the expansion of P can be obtained by differentiating with respect to u and
setting u = 0, and are therefore in @2 by (3.5.61). Further, the usual integral
formula for the remainder in a Taylor expansion together with (3.5.62) shows
that R has a uniform zero of order r, in the sense of Equation (3.2.30). The
result follows from Lemma 3.5.7 and from Lemma 3.2.5. O

We are ready now to pass to the proof of the non-linear analogue of Theo-
rem 3.4.3:
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Theorem 3.5.9 Let pe Z,q,1/6 e N,—-1 < ' € R, k € NU {00}, and let

(0, 9) € G2 (Quy1) X €L (1), W1 € LRy 1)

(11 as in Equation (3.5.60)), be a solution of (3.5.58) with G of the form (3.5.59),
where H is §-polyhomogeneous in x with a uniform zero of order

1
m>2"13 (3.5.64)
q
Suppose that Equations (3.4.38)-(3.4.39) hold, and that
By € (42 N L) (Qor),  Biz, Boo, Bor € Q1) , (3.5.652)
a,b € L (yor) ©(0) € A3 (My,) . (3.5.65b)

Then

o€ (x(mq—p)(sdkd + 52{]3) (ng,T) — xmin((mP—Q)&O)Mk‘s(QZO7T) ,

b € MDY 430, 1) 4 Coo (gr) © (40 VL% ()
If one further assumes
Llan BlQa a, 30(0)’ Glp('v O) € LOO(QfEOyT) )
then it also holds that

Y€ (x(mq_p)(s,jsz(s + JZ/]? N Loo) (Qaco,T) _

Remark: Obviously the theorem remains true if we replace G by a finite sum
of nonlinearities satisfying the above hypotheses, with different p’s and ¢’s for
each term of the sum.

PRrROOF: The result is established by a repetition of the proof of Theorem 3.4.3,
using Lemma 3.2.5 and Lemma 3.5.8 to obtain the necessary estimates on the
non-linear terms. We simply note that the condition on the order m of the
non-linearity guarantees, using Lemma 3.2.5, that

&rw =cC9 € (fo)g_e R
with
A =min{f,mqd — pé} > -1,

hence ) € L™ by integration. Decreasing (3’ if necessary we may without loss
of generality assume that 5/ = A\. When applying Lemma 3.5.8 it is convenient
to view the function H as a function of the variable f := (1, z19, xp) € L.
The remaining details are left to the reader. O

As a straightforward corollary of Theorem 3.5.9 one obtains:
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Theorem 3.5.10 Let § = 1 in odd space dimensions, and let § = 1/2 in even
space dimensions. Consider Equation (3.5.1) on R™! n > 2, with initial data

ﬂ{TIO} , 8]7/87\{720} S <'Q{o€> N Loo) (Maco) .

Suppose further that H (z#, f) is smooth in f at fixed z*, bounded and §-polyhomogeneous
in z# at constant f, and has a zero of order ¢ at f = 0, with ¢ as in (3.5.21).
Then:

1. There exists 7 > 0 such that f exists {1, -, with
11l Lo (@0g v, ) - (3.5.66)

2. If the initial data are compatible polyhomogeneous in the sense that there
exists A > —1 such that

VieN  9Lf(0) € L®(My,), 9,0Lf(0) € €N (M)

then the solution is polyhomogeneous on each neighborhood Q,, -, of &
on which f exists and satisfies (3.5.66) with 7 replaced by 7.

PRrROOF: Point 1 is a Theorem 3.5.1 specialised to polyhomogeneous initial data.
To prove point 2 we set

b1 =f
Y = b : (3.5.67)
o = é
A
and
© = . (3.5.68)
Then Equation (3.5.3) takes the form (3.5.58) with
G=-Q "5 H@@"QT f)=-Q " H@ Q" ¢), (3569
G, =-G , (3.5.70)
-G
Gy, =0, Gy, = < 0 ) : (3.5.71)

For n even we take 6 = 1/2, p =n + 3, ¢ = n — 1; the condition then (3.5.64)
reads m > 28 which coincides with (3.5.21). For n odd we take § = 1,

p="% ¢g="2-1 and (3.5.21) guarantees again that (3.5.64) holds. O

3.6 Wave maps

Let (4", h) be a smooth Riemannian manifold, and let f : (#,g) — (A, h)
solve the wave map equation. We will be interested in maps f which have
the property that f approaches a constant map fy as r tends to infinity along
lightlike directions, fo(z) = pg € A for all x € #. Introducing normal
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coordinates around py we can write f = (f%), a =1,...,N = dim .4, with the
functions f* satisfying the set of equations

Gfb of¢
Oy R =0 3.6.1
where the Fgc’s are the Christoffel symbols of the metric A. Setting as before
fo= __f“ g = Q%g, we then have from (3.1.3),
n—1 =3 n—1 ~
7OQ 2 o= f) n-1 = N
O= = — atv _ a .
(3.6.2)

In particular if (.#,g) is the Minkowski space-time (and if we use the same
conformal transformation as in Section 3.1) we obtain a system of Equations
(3.5.13)-(3.5.17) with as = ba = 0, with the obvious replacements associated
with f — f% and with G in (3.5.17) replaced by

"= T (T ) {07 (~ohet + o)
(-1 e [(mi - (1+m+2f)¢>b_) ~(n— 1)fb]} . (3.6.3)

3.6.1 Existence of solutions, space derivatives estimates

As before, for even space-dimensions n the occurrence of non-integer powers of
) above does not allow the use of the standard conformal method except for
special target manifolds (.4, h), ¢f. [11]. This can be handled in our approach,
and we show:

Theorem 3.6.1 Consider Equation (3.6.1) on R™! with initial data given on a
hyperboloid . D ¥, o in Minkowski space-time, and satisfying

Fa a (A8, NL®) (Sag0), n>3,
axm—”T‘lfanzwoo € A (Sroo) (3.6.5)
fn; %a(zxo,o) ’ n Z 3 )
87’(9 )|E’I‘0 0 S { (%a m Loo) (Exo,O) , n = 2 . (366)

forsome k> 5 +1, -1 <a< —1/2. Then:

1. There exists 74 > 0 and a solution f® of Equation (3.6.1), defined on a set
containing €2, -, , satisfying the given initial conditions, such that

”J?CLH%{)(Q%H) < oo, n=2 (3.6.7a)

T
e (F) oo @ug ey + D 18X 1200 1)
=1

+HJ?QHL°°(Q ) T HmanaHLOO(Q y<oo, n >3 .(3.6.7b)

T0,T4 TO,T4

Here the X;'s are the vector fields defined in Section 3.2, cf. Equation (3.2.7).
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2. Further, if 7, is such that f% exists on €, . with (3.6.7) holding with
T4 = Ty, then for all 0 < 7 < 7, we have

fa‘zxo,‘r e LOO(ZQOJ-) ﬂ %{;ﬁ_l(zxo,T) ’

ana|Ezo,T € %%(EIOJ') ) axfa|zzo,7' € ‘%ﬁ’a(zxoﬂ-) )

uniformly in 7. If n = 2 we also have uniform bounds in the following spaces

F1500r € (G0 NAL) (Baor) s 0nf 50y, € (HRNL™) (Sapr) -

Remark: Integration of condition (3.6.5) implies of course that f € L>®(X400)-

PROOF: The proof is similar to that of Theorem 3.5.1, but simpler, because we
do not need to gain a 1/2 in the decay rate, as done in Lemma 3.5.2. We write
Equation (3.6.1) in the form (3.5.12)-(3.5.16), with aq = by = 0 and with G in
(3.5.17) replaced by G defined in (3.6.3). We write G as

G*=A"+B*+C*4+ D+ E*, (3.6.8)

with the order of terms in (3.6.8) corresponding to that in (3.6.3). Since we
are working in normal coordinates, I'}. has a uniform zero of order one in the
sense of (3.2.30) at f* = 0. We want to use Equation (3.4.20) to get an a-priori
estimate for the solutions of (3.6.1); for this we shall need to estimate the 4
norms of all the terms which occur in (3.6.8). The simplest such term is E:

n—1
2

n-1 -~ _ n-1~ _q_n=1

1B e = (n=12T5(Q72 1)@ f)Q™ )" e
n—1 ~ n—1 ~ n—1

~ (n- 1)2HT?ZC(QTf)(QTfC)(QTfj’)lljﬂaﬂnﬂvz :

where we have used the fact that /x is a smooth, and therefore bounded, func-
tion. The function Fl‘jc(QnTilf)(QnTilfc)(QnTilfb) can be viewed as a smooth

function F' of ach_lfa with a uniform zero of order three. We can thus apply
(3.2.31) with | = 3 to obtain

IE@)lge < CUFS) L) IF] gara—n
< O )z Flle (3.6.9)

since n > 2. We note that in dimensions larger than or equal to three we
have at least one power of z “left unused” above, which will be made use of
in estimating the remaining contributions to G*. We proceed in a similar way
with the other terms; in space dimension n = 2 we view D* = (n — 1)(1 + x +

n—1 =

QT)QHT%FELC(QT F)fed® as a smooth function F with a uniform zero of order

three of (an_l fa, x%di), which leads to the estimate

1D e < CUTE) e, 6-()) (IFlle + 16-(5) e f3.6.10)
On the other hand, in dimension 3 or higher we can view D% as a function F
with a uniform zero of order three of (a:anl 7o, anflxgb‘i), which implies

IDG) e < CUFS e, w6 (lze) (1Fle + 6 (3)]Lrze}6.11)
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Regardless of dimension we view C* = (n — 1)xQnT_SI‘§_Cl(§EnT_1 f_)lj?‘:(bi as a
smooth function with a uniform zero or order three of ("2 f® z 2 x¢%), ob-
taining thus

IC) e < C(IIf(S)HLoo,||<E¢+(5)||Loo)(IIfH%ﬁ,g+|!w¢+(8)|\%o()3~6-12)

. . . n—1 % n—1 . . .
Viewing B as a function of (z 2 f* z 2 z¢%), and viewing A® as a function
n—1

n—1 =~ n—1
of (72 f% x 2 z¢®,x 2z x¢%), one similarly obtains for n > 3

1A e < CUTSae 26-(5) 1o, - (5)]| 1<) x
(171 + 26— ()l + w64 ()l ) . (36.13)
1BG)lge < CUFE) I, ldas) ) (1F e + lloga(s)llep-6.14

while in dimension 2 it holds that

JAG) e < CUFE) e, 16— (3)llzoe 264 () 1<) x
(17l + o (e + o (o) - (3:615)

1BG) g < CUFS) e, loa)lze) (1Flae + 10a(s) ] 3.6.16)

Summarizing, in space dimension two we have obtained

IGO)e < CUTE) s, o ()lle, oA e, 264 ()] 222) X
(172 + 16— () ge + 1+ (5) g + @a(s)le )

< CIf )z, [|o-(s)llzoe, [[@als)llLoe s 2+ (s)llLoe) x
E,(s), (3.6.17)
where
Eo(t) = 1fO5ee + lo-O)13e0
Hlo Ol + 3 10a0) s (3.6.18)

On the other hand in higher dimensions we can write

1G(s)lloge < CUIf($)[Loes lxdals)|Loe, [zd—(s)lze, 2o+ (s)l|Lee) X
Ea(s) - (3.6.19)

To obtain a closed inequality from Equations (3.4.20) and (3.6.17) or (3.6.19),
we need to control all the Lo, norms occuring there. Since k > n/2 + 1, from
Equation (3.6.17) and the weighted Sobolev embeddings we obtain

Gz < CUF Lo 9-(s)l[Loes [[0a(s)][ Lo, Eals)) 5 (3.6.20)
in n =2, or — from (3.6.19) —

Gz < CUS(S)lLee, Eals)) (3.6.21)
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for n > 3. The identity

- - 1 xro—2T

fa(’i', .’II) = fa(’]" xo — 27’) — 5 / ((ﬁi + ¢L_l|_)(7', 8) ds (3622)
yields

[1£(8)ll 2

IN

C (VE(0) + 16— ()llag + 194() sz )
< ¢ <\/Ea(0) n \/Ea(s)> . (3.6.23)

for n > 3, while if n = 2 we use the estimate

AN

Folem + loalm < C (VB +é-Gllap + 6+l
< C(VEQ(O)JF\/EQ(S)) . (3.6.24)

In Equations (3.6.23)-(3.6.24) we have estimated f*(r, zo — 27) and its angular
derivatives by a multiple of the initial energy E,(0), which is justified for 7 <
Tx < 2o/2. If n > 3 Equations (3.4.20), (3.6.21) and (3.6.23) give

Ea(7) < CE.(0) + /0 " @ (Bu(s)) ds | (3.6.25)

for some constant C, and for a function ® which is bounded on bounded sets,
and we conclude as in the proof of Theorem 3.5.1.
If n = 2, we note the identity

6 (r2) = 6 (0,0 +27) + /0 e (6 )0, 2r—0)+a)do.  (3.6.26)

From the second of Equations (3.5.14) we obtain
le+(0-)(s,2)| < C ([lo-(s)llgg + [a(s)llwp + d+(s)lgg + G () ) =,
so that
lo—(mz)] < lo-(0)]z= + C/OT (Io-(@)lleg + lea(@)llep + lo+ (o)l
+G(o)llgs) (2T — o) + x)* do . (3.6.27)
It follows that
[¢o— (Tl < [|¢—(0)]| L + C/OT (\/er HG(G)II%Oa) (1 — 0)1316:28)
Let
F(s) = [ (s)llz= + ¢~ () z> + |6a(s)l| = + V/Eals) - (3.6.29)
It follows from (3.4.20), (3.6.24) and (3.6.28) that we have

F(r) < CF(0) + /OT O(F(s) (14 (1 —0)?) do, (3.6.30)

where @ is a function bounded on bounded sets. We have the following;:
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Lemma 3.6.2 There exists a time 7., depending only upon C, F(0), and the
function ®, such that any positive continuous function F' : [0,71) — R satisfying
the inequality (3.6.30) with @ > —1 is bounded from above by C'F(0) + 1 on
[0, max (74, 7x)).

PROOF: Let
M= sup |2(z)];
0<e<CF(0)+1
if M = 0 the result is obviously true, so assume that M # 0. ;From Equa-
tion (3.6.30) we obtain that on any interval [0,7) on which ' < CF(0) + 1 we
have

r TaJrl
F(T)<CF(0)—|—/ M1+ (tr—0)%) da:CF(O)+M<T—|- +1).
0 «

(Equation (3.6.30) with 7 = 0 shows that CF'(0) > F(0), and continuity of F’
implies that the set of such intervals is non-empty.) The result is established

by choosing
- 1 a+1 1/(a+1)
Te=min | oo | s .

Because the existence time 7, in Theorem 3.6.1 does not depend upon z1,
Theorem 3.6.1 with n = 2 follows again by an argument identical to the one
given at the end of Theorem 3.5.1. O

a

As in the case of the nonlinear wave equation (3.5.1), in order to obtain
time derivative estimates we shall need a more general version of Theorem 3.6.1.
Thus, we consider systems of the form (3.5.39)-(3.5.41) with a rather more
general form of the non-linearity G' appearing there. It should be clear from
the proof of Theorem 3.6.1 that the case n = 2 needs separate treatment; in this
thesis we will only consider dimensions n > 3; similar results hold in dimension
n = 2 for equations with a nonlinearity of higher order:

Theorem 3.6.3 Let n > 3 and consider the system (3.5.39)-(3.5.40) with

la(m)llze +116(T) e + sup [ Bap ()l

a,b=1,2
+HIBo(T)llgp + 1By (T)llz + 1B1(T) 0 < C, (3.6.31)
for some constant C, with the nonlinearity G' in Equation (3.5.39a) of the form

G = x_(”+3)/2H(x“, x(n—l)/Q}: D220 4. x(n—l)/%@_’ w(n—l)/%(ﬁ_) ’
(3.6.32)
with G._(4,) = 0 (cf. Equation (3.5.42)), and with H having a uniform zero of
order ¢ > 3 in the sense of (3.2.30). Suppose that the initial data satisfy

iy n—1

JU5000 =972 fUs,,0 € (451N LP) (Bag0) (3.6.33)
awfa‘Ezo,o € %ﬂka(zxo,o) 5 (3.6.34)
8"'f:a|2avo,0 E %a(zxo,o) bl (3635)
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with some k > 5 4+ 1, —1 < a < —1/2, then:

1. There exists 7 > 0, depending only upon the constant C in (3.6.31) and
a bound on the norms of the initial data in the spaces appearing in Equa-
tions (3.6.33)-(3.6.35), and a solution f of Equations (3.5.39)-(3.5.40), de-
fined on a set containing €., -, , satisfying the given initial conditions, such
that

T
e (FM o (@) + D 15 XiF (011, )
i=1

HIF N oo (g oy ) + 120 o o0y ) <00 (3.6.36)

2. Further, if 7, is such that f“ exists on {, ., with (3.6.36) holding with
T4 = T, then for all 0 < 7 < 7, we have

fa\zzo,T € L®(Ez0,r) N AL (Baor) (3.6.37a)
Or 500 € 3 (Zapr) s (3.6.37D)
axfa‘Ezo,-r € %a(zxo,’r) ) (36370)

with uniform bounds in 7; this implies

2070+ [| Lo (0 ) + [[20-04 Lo (0 ) + (@ + QT)arfaHLoo(Qwo,u) <00.
(3.6.38)

If & > n/2+ 2 then we also have

|2+ 27)0r || Lo, ) < 00 - (3.6.39)

1077'*)

PrOOF: The transition from Theorem 3.6.1 to Theorem 3.6.3 is rather similar
to that from Theorem 3.5.1 to Theorem 3.5.3. We note that the estimates done
in the course of the proof of Theorem 3.6.1, with n > 3 there, can be summed
up in the inequality

lz= 2 H (2, 2D ) g < O Fllzoe) | fll e (3.6.40)
where X B

f = (f?mqua $¢+, CC¢_) .

The minor modifications of the proof of Theorem 3.6.1 needed to obtain (3.6.37)
and the estimate (3.6.38) on (z+27)0; f are identical to the ones described in the
proof of Theorem 3.5.3. The estimate on [|[20; ¢+ ||~ (q,, ,.) is obtained directly
from Equation (3.5.50) and from (3.6.40). The estimate on [|20;¢4|| L= (q,, ) I

obtained from the (3.5.39a)—equivalent of the first of Equations (3.5.14). Next,
for kK > n/2 + 2 Equations (3.5.43) and (3.6.40) give

er(p_) € 42, C 67, (3.6.41)

Differentiating Equation (3.6.26) with respect to x gives

Opp—(T,2) = 00— (0,2 4+ 27) + /OT (Ozes(p-)) (0,2(T —0) + ) do, (3.6.42)



3.6. WAVE MAPS 71

which together with (3.6.41) implies, by straightforward integration,
z(z +27)|0z0—(1,2)| < C (3.6.43)
This, (3.6.41), and the identity
Ord— = (0r — 20, +20,)6 = e1 (6) + 20,

establish (3.6.39). ]

3.6.2 Estimates on the time derivatives of the solutions

To control the time derivatives of the solutions, as in Section 3.5.2 we inroduce
an index m which counts the number of corner conditions which are eventually
satisfied by the initial data at the “corner” 7 = x = 0. As before we make a
formal statement only for solutions of the wave-map equation (3.6.1), it should
be clear from the proof that an analogous statement holds for solutions of
(3.5.39)-(3.5.40) under appropriate conditions on the coefficients there.

Theorem 3.6.4 Let N > m > 0, consider a solution f : §2;, -, — R of Equation
(3.6.1) satisfying

lzes (F) | oo (g vy + D 12X 220 (020 1)

i=1
H1 P o0 (@ ) + 1205 F | o0 (0 ) < 00 (3.6.44)

and suppose that
0<i<m+1 8§fa|210,0 S %ccfkarlfi(Zwo,O) > (3'6'45)
0<i<m  0if'ls,,e € H%m i(Sa00) (3.6.46)

with some k > 5 +2, -1 < a < —1/2. Then for 0 < 7 < 7 and for 0 < i < m,
we have

0<j+i<k+m-—n/2

(7 4 22)0, P 0L [ 5y - € L7 (Sgr) N A1 i (D7) (3:6.47a)
0<j+i<k+m-n/2—1

0ul(7 + 22)0: 0L )5, . € A% miej(Zwor) s (3.6.47b)

and
0<p<k—n/2 [(r+22)0 PO fUs, € Ay (Sapr), (3.6.48)
with 7-independent bounds on the norms.

PROOF: The proof is an inductive application of Theorem 3.6.3, as in the proof
of Theorem 3.5.4, and will be omitted. |
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3.6.3 Polyhomogeneous solutions

Theorem 3.6.5 Let § = 1 in odd space dimensions, and let § = 1/2 in even
space dimensions. Consider Equation (3.6.1) on R™! n > 3, with initial data

Flirmoy s 0F%)07|rm0y € F2 (M) -
Then:

1. There exists 7 > 0 such that f¢ exists on {2, -, with
11 Lo (9., ) - (3.6.49)

2. If the initial data are compatible polyhomogeneous in the sense that there
exists A > —1 such that

VieN  0LJ(0) € L¥(My,) . 9,0LF4(0) € G (M) |

then the solution is polyhomogeneous on each neighbourhood €, -, of ./
on which f exists and satisfies (3.6.49) with 7 replaced with 7.

PRrROOF: Existence of solutions follows from Theorem 3.6.1. Theorem 3.6.4 gives
the time-derivative estimates which are necessary in Theorem 3.5.9. In order
to apply that last theorem, we set

_ ¢i>
© <¢CA , (3.6.50)

Y= (%), Wa=(¢%). (3.6.51)

Equation (3.6.2) takes then the form (3.5.58). As in Theorem 3.5.10, for n even
we take 6 =1/2, p=n+3, ¢ =n — 1; while for n odd we take 6 =1, p = ”T+3,
q = "Tfl The non-linearity here is of order 3, which is compatible with the

hypotheses of Theorem 3.5.9, and the result follows by that last theorem. O

and
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4.1 Weyl connections in a doubly null frame

Consider any field of vectors e;, i = 1,...,4, such that
o 0 0

(9i5) = (9(esse;)) = 0 0 -2 |, (4.1.1)
0 -2 0

where indices ¢,j etc. run from 1 to 4, while indices a,b etc. run from 1 to 2.
One therefore has

) o o5 0 0
(99)=g(0"¢")=| 0 0 -1/2 |,
0 —-1/2 0
where ' is a basis of T*.# dual to e;. If i, i = 1,---,4, is a usual Lorentzian

orthonormal basis of T'.Z ,
g(ai, ) = mij = diag(+1,+1,+1,-1) ,
then a basis e; as above can be constructed by setting
€a =0q, €3=Qa3+ a4, €4=04—Q3.

Let Vol, be the Lorentzian volume element of g, with the associated completely
anti-symmetric tensor €;;:

1 , .
VolgzﬁlAﬁ2A63Aﬁ4:Eeijmﬁ%ﬂmﬁ’%ﬁl,

where ' is a basis dual to aj. We have 03 = (8% + 8%)/2, 0* = (8% — 8°%)/2,
B3 =03 —0%, B* = 6° + 6%, hence

1 ) )
Vol = 201 6% A 0% A0 = Lreiji 0" N O7 AOEAD

It follows that in the basis e; the entries of the € tensor are zeros and twos:

€134 = 2. (4.1.2)

We let
S = Vect({el, 62}) s

where Vect(X) denotes the vector space spanned by the elements of the set X.
For any connection D we define the connection coefficients I';7; by the formula

so that

Let D be the Levi-Civita connection of the metric g, for any vector field b set

S(b)i*e = 6Fby + 65bi — gieg™b;



4.1. WEYL CONNECTIONS IN A DOUBLY NULL FRAME 75

and let the connection D be defined as
D=D+5(f), (4.1.3)

for a vector field f which will be defined later. This equation has to be under-
stood as follows: if I';/;, are the connection coefficients of D, then

Tip =T+ S(f)ik -
We note that f can be obtained from the fij ks as follows:

1~
fi=7Ti" .
4

The connection D has no torsion,

~

De,e, — De,e; = [ei, €] ,

however it is not metric compatible:

~ ~ ~ ~

Digjr. = (De,9)(ej,ex) = —Lijp — Ding = —2figjn - (4.1.4)

Here and elsewhere,
P m
Tijk == gjmLi™k -

This shows that the usual anti-symmetry property I';j;, = —I';; of the connec-
tion coefficients fails to hold for the following components of I':

Tisa = —Tiz —4fi s Tiap = —Lipa + 2fi0ap - (4.1.5)

In particular, the coefficients

~ ~

Finn=Tin="1 (4.1.6)

do not vanish. However, both figg = —2fi43 and fi44 = —21A“i34 vanish. For
further use we note the identity

Dig* = 2f;ig’" (4.1.7)

which follows from (4.1.4).
The null second fundamental forms of a codimension two submanifold S
are the two symmetric tensors on S defined as

X(X,Y) =g(Dxes,Y),  x(X,Y)=g(DxesY), (4.1.8)

where D is the Levi-Civita connection of (.Z, g), while X, Y are tangent to S.
The torsion of S is a 1-form on .S, defined for vector fields X tangent to S by
the formula

((X) = _%Q(DX€3764) = %Q(DX64,€3) . (4.1.9)

In those definitions it is also assumed that e3 and e4 are normal to S, so
that S coincides, over S, with the distribution T'S of the planes tangent to
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S. (Throughout the indices are raised and lowered with the metric g.) We
shall need generalizations of those equations to the case when the connection
is not metric compatible, and when § is not necessarily the tangent space to a
submanifold. Thus, we define the hatted counterparts of the above objects as
follows: for X,Y € § we set

X(X,Y)=g(Dxes,Y),  x(X,Y)=g(Dxes,Y), (4.1.10)

C(X) = *%g(ﬁxes,%) ) Q(X) = *%g(ﬁx64,63) . (4.1.11)

The fields x;, x, ¢, ¢ are now defined in exactly the same way, with D replaced by
D. Since D is metric compatible we have g(Dxes,eq) = —g(Dxeq, e3) so that
there is no real need of introducing an unhatted ¢, but a) this antisymmetry

property will not be true for general 15; b) the unhatted equivalent of Equa-
tions (4.1.15) below looses its manifest symmetry under the exchange of e3 with
e4, when ( is replaced by —(. We stress that in Equations (4.1.10)-(4.1.11) we
do not assume that S is integrable, so that the vector fields X and Y above are
not necessarily tangent to some submanifold. While x and x are symmetric (as
tensor fields on ), X and X are not: B

Xab — Xba = —9(eq,[eq,é€p]) ;
Xab — Xba = —9gl(es,[ease]) (4.1.12)

and when the distribution of planes S is not integrable the commutators [eq, €3]
will have non-zero ez or e4 components.

Following! Klainerman and Nicold, we use the following labeling of the
remaining Newman-Penrose coeflicients associated with the frame fields e;:

£ = 39(56464,%), (4.1.13a)
£, = %g(ﬁegeg,ea), (4.1.13b)
la = —%g(ﬁegea,ez;):%g(ﬁege4,ea), (4.1.13¢)
n, = *%g(ﬁewa,es)zég(f)mes,ea), (4.1.13d)
2% = —%g(ﬁmeg,(u), (4.1.13e¢)
2% = —%g(ﬁe3e4,eg), (4.1.13f)
20 = —%g(ﬁege3,e4), (4.1.13g)
20 = —%g(ﬁe4e4,eg), (4.1.13h)

together with their unhatted counterparts, defined with D replaced by D in the
equations above. (The principle that determines which symbols are underlined,

!We are grateful to Klainerman and Nicold for making their tex files available to us.
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and which are not, should be clear from Equation (4.1.15) below: all the terms
at the right hand side of that equation have a coefficient in front of e4 which
is underlined.) The above definitions, together with the properties of the D
connection coefficients fijk, imply the following:

)Zab
Xab

This leads to

ﬁoLeb
ﬁ3ea
ﬁ4ea
ﬁaeg
ﬁa€4
13363
l/j4€4
13463

D3€4

Taps = —Laap = 2003 = —204°

Tupg = —Tagp = 2T, = —2T?

N 1~ .

T3 = _§Fa43 =Tu?,

. 1~ N

11@44 = _§Fa34 - _Pa33 ’

N R 1~ 1~

'y = —T'4q §F4a4 = _§F44a
. 1~ 1~

T3, = T3, = §F3a3 = _§F33a

. 1~ 1~ .

33, = _§F34a = —I'3qa = —T'34

. 1~ 1~ .

F44a - —§F43a - F4a3 - —F4a

N 1~ .

I'y”3 —§F443 =Ty,

N 1~ N

I's®y = —§F334 =1I33",

R 1~ N

3”3 = —§F343 =1I34",

. 1~ .

Ty = —§F434 =1I'y3

A~

1 1.
= V,er+ 5 Xabes + 5 Xaved

= Dseq+ilaes +E ea
= Duea+ i ea+ aes
= Xalep + Caes
= Xa'es + §a€4 )
= 2{%q + 20e3 ,
= 2%, + 20eq ,
= 2n,ep + 2wes
= 20pep + 2wey .

I

)

(4.1.14a)
(4.1.14b)

(4.1.14c)
(4.1.14d)
(4.1.14c)
(4.1.14f)
(4.1.14g)
(4.1.14h)
(4.1.14i)
(4.1.14j)
(4.1.14k)

(4.1.141)

We stress that Equations (4.1.15) are completely general — no simplifying
assumptions have been made concerning the nature of the vector fields e,
except for the orthonormality relations (4.1.1).

From Equations (4.1.5), (4.1.6), (4.1.14) and (4.1.15) one also has

Ja

~

1~ . -
= i(ga +Ca) = Ta11 = a2 ,
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f3 = 0+
fa = o+

We have the following correspondence between the hatted and unhatted con-
nection coefficients:

a11 = Lao2 . (4.1.16)

Xab = Xab+t habfa , (4.1.17a)
Xab = Xab+ havf3, (4.1.17b)
Co = Catfa, (4.1.17¢)
o= Cata=—Catfa, (4.1.17d)
bo = &, (4.1.17¢)
£ = &, (4.1.17)
Mo = Ta+t fa, (4.1.17g)
n, = n+fa, (4.1.17h)
W o= w, (4.1.171)
w = w, (4.1.17j)
b = v+ fz3=-w+tf3, (4.1.17k)
O = vtfa=-—w+tfi. (4.1.171)

4.2 Weyl-type tensors

4.2.1 The double-null decomposition of Weyl-type tensors
Let dijkl be any tensor field with the symmetries of the Weyl tensor,
dijrt = dig , digg = —djir , 9 digra =0, digjry = 0; (4.2.1)

we decompose d' ;g into its null components, relative to the null pair {es,eq},
as follows:

Ad)(X,Y) = d(X,e5,Y,e5), ald)(X,Y) = d(X,eq, Y, eq) , (4.2.2)
B(d)(X) = %d(X, esc5.ea) BA)(X) = %d(X, esc5.0a)  (4.2.2b)

1 1
p(d) = Zd(€3,€4,63,€4) , o(d) = p(d) = Z*gd(eg,e4,eg,e414.2.2c)

where XY are arbitrary vector fields tangent to the S(z,7)’s, and *¢ denotes
the space-time Hodge dual with respect to the first two indices of d;;:

1
" dijh = Sei™" drnki
«a and « are clearly symmetric, and they are also traceless:
0= gijd(eiae4aej7e4) — d(€1,€4,el,€4) +d(€2,€4,€2,€4)

1
—§(d(€4, €4, €3, 64) + d(e?)a €4, €4, 64))
0 0
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similarly for a. From Equation (4.2.2) one finds

dasbs = Qab ,  daabs = Qb » (4.2.3a)
dazsa =20, ,  daaza =204, (4.2.3b)
dgaza =4p,  dapza = 20€qp , (4.2.3¢)
dabes = €ab "B, s dabes = —€ap *Be (4.2.3d)
d*spa = —pdy + 0€% ,  dabed = —PEabted ; (4.2.3¢)
where
€12 =—€n =1, €11 = €22 = 0. (4.2.4)

Further, * denotes the Hodge dual on S with respect to the metric induced by
gonS:
*Ba = 6abﬂb . (4.2.5)

The first three equations in (4.2.3) follow immediately from the definitions; we
simply note that in the equation for dgp34 one uses
1
g = Zfabdab34 << dgpzs = 20€qp , (4.2.6)
with the factors appearing there justified by (4.1.2). To obtain the fourth
equation in (4.2.3) one has, e.g.,

1 1
di914 = —da114 = —da114 — do224 += dozas +=doszs —=daszs = — 2 = —€12 * 01,
~—— 2~ 2 2
0 0

—g%d;54=0

and the result follows by symmetry considerations. The last equation is ob-
tained in a similar way.

4.2.2 Double-null decomposition of the Bianchi equations

We will need a double-null decomposition of the equations

>

ﬁidijkl = Jjw, (4.2.7)

)

ﬁ[z’djk]lm = Jijkim (4.2.8

where jjkl and jijklm are source terms to be specified later; square brackets
around a set of ¢ indices denote antisymmetrization, with a numerical factor
1/0. (Actually, Equation (4.2.7) will turn out to be sufficient for most of our
purposes.) Equation (4.1.7) yields the following alternative form of (4.2.7):
Di(g"™ dmjt) = ¢"™ Didpmjt + 2 ™o = Jina - (4.2.9)
Equation (4.2.9) with k = 3 and k = 4 gives
Dadyzyy = 20 Dodiaig + 4f ™ dmapt — 231 (4.2.10a)
Dadgary = 20" Dadyary + 4f " dymars — 2Jaa (4.2.10b)
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which will give equations for 3, 3,0 and p; we use the symbol h to denote the
metric induced on S by g: for all X, Y € T.#,

WX, Y) = g(X,Y) + Sgles, X)gles, V) + soles, X)gles,Y) . (42.11)

To obtain the equations for oy, and g, we write
N 1 -~ . R
9" Didjqap = _§(D3d4a4b + Dydsaup) + h° Dedgans

1 - N _ N
= _§(D3d4a4b + Dyd3aap + D3dgaar, + Dodasay

3J4304b
N N -
— D3dgaat, —Dadasap) + K Dedgqap
——

—Dsdyaap

. 1 ~ ~ 3.
= —D3dyqap + §Dad434b + 1 Ded gaar — §J43a4b ;

hence

N 1~ cd N m 3 7

D3dyaap = §Dad434b + hDedgaay + 2" dmasy, — §J43a4b + Jaap , (4.2.12)
with a similar equation in which the index 3 is interchanged with the index 4:

N 1~ cd N m 35 7

Dyd3a3p = §Dad3436 + h*Dedgazy + 2f" dmasp — §J34a3b + Jazp - (4.2.13)

An equivalent, slightly more convenient, way of obtaining the null compo-
nents version of Equations (4.2.12)-(4.2.13) proceeds as follows: Consider the
“Bianchi” equation R

Did' oy = Japs - (4.2.14)

For any tensor field T,; we denote by Ty, the symmetric traceless part of Ty,
and by trT its trace. Applying the “overline” operation to Equation (4.2.14)
one has

ﬁidi(ab)4 = Jabyt »

which we write in the form

21536[3(@1))4 + 21546[4(@1))4 + 2ﬁcdc(ab)4 = 2j(ab)4 . (4215)

Each of the terms on the left-hand-side of Equation (4.2.15) will be computed
separately. First,

2D5d%(upys = —Dsdaanys — 2f3da(an)s
= Dsdaaps + 2f3daspa .

since Dydg4ps 18 symmetric traceless. A calculation gives

2ﬁ3d3(ab)4 = fDSaab - 477(0, Bb) + 4*ﬁ(a *ﬁb) + (2@ - ZQ)O‘ab )
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where
Dacvgy == es(aq) — T5C0000 — D3 tae - (4.2.16)
Noting that
Nia By = M@ Bp) + gab? - B

we finally obtain

2D3d% (s = Dsa —47@s6 + (20 — 20)a (4.2.17)

where, following Christodoulou and Klainerman [14], 7®,/5 denotes twice the
trace-free symmetric tensor product,

(X®,Y)%® = xoy® + Xy — g2 X, v° (4.2.18)
similarly for covectors. Next, we claim that
Dyd* (s = 0, (4.2.19)

which can be seen either by a direct calculation, or as follows: Equation (4.2.3)
shows that d4(ab)4 = —%dg(ab)4 is proportional to the metric h. Now any covari-
ant differentiation preserves symmetries of tensors; further one easily checks
that D-covariant diffentiation preserves the property of being proportional to
the metric, and the result follows.

For the last term, note that D.d also has all the symmetries (4.2.1), and
can therefore be decomposed as in (4.2.2), with a(d) there replaced by a(D.d),
Ba(d) there replaced by ﬁa(]jcd), etc.; one then has identities analogous to
(4.2.3). It then follows that

2D d (s = 2e°(q€ »aB%(Ded)
= ﬂa(Dbd) + /Bb(Dad) - gabﬂC(Dcd)
= 2B, (Dy)) .
Further,
25d(ﬁcd) = gdeﬁcde434
= 29deycﬂe - 3)2ch - 3*>ZZCU - Xceade - (4§c + 2((:)/8d
= 2V,84—2C_Bd — 3Xeap — 3X4eT — Xe“tde (4.2.20)
where YA7 is the orthogonal projection on S of the relevant covariant derivatives

in directions tangent to S, e.g.

~

V.er = Du%ee . (4.2.21)

and we have used gde?cﬁe = ?cﬁd + 2f.B4. Then, taking the symetric traceless
part of Equation (4.2.20) one is led to

—2Dd (s = 2V, Ba) — 3R (anp + X(at))

= 1 . .
_2§(a/8b) - §(trxaab + a(x) aab) ’
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where *ag, = €,%qp; further, we have used

Xaeabe =+ Xbeaae - gabXCdacd = trXO‘ab + a(X)*aab )

with
a(%) == €®xap = X12 — X1 -

Summing up, one obtains

R 1 o 1
Dsa+ strga = Y86+ (28— 20)a - Sa(¥)

~3(Xp+R0) + (4 — OBB +2J(, -, ea) -

Consider, next, the equation for ez((3); its doubly-null decomposition can
be obtained as follows: We start with the equation

Did'sta = Jaua (4.2.22)
which gives
_%ﬁ3da434 — f3dazs + Ded®300 = J3aa (4.2.23)
so that
%ESda434 = —Ded®sas — f3daasa — J3a - (4.2.24)
We have the identity
T Cqd%s0s + T tadtsqy = 0, (4.2.25)

which can be seen as follows: from the null decomposition of d we have
_fccddd?)azl + fcd/adc3d4 = _fccd(_pég + O'gda) + fcda(_p5ccl + o-gcd)
= <_Fch5da + chascd)o' .
Setting a = 1 one finds
_chdgda + fcdaecd = f112 + f222 + f121 - fZH >
and one concludes using f222 = fg“ and fllz + f121 =0.
Using Equation (4.2.25) with some work one obtains
_Bcdc3a4 = YA7aP + (*?)ao' - tI"X/Ba - chgcb* a
+X0a B + XeeadBC — p(la+C,) — 0(*Ca +7C,) (4.2.26)

On the other hand

1~ . . . .
§D3da434 = ID3p — (40 +20)8 — & - a — 3ip — %o, (4.2.27)
where

ﬁ)3ﬁa = e3(ﬁa) - beaﬁb . (4.2.28)
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Using the identity
)A(cdead*éc = )A(acﬁ - trf(éa

and the above intermediate calculations we finally obtain the equation

C

By = Dsf+trgf=Vp+ Yo+ (X+X) 8+ 28+ 3(7p + o)
~((C+p+ (C+0)0) + & o — Xape™B — Jaaa - (4.2.29)

Similar, tedious but otherwise straightforward, calculations allow one to
obtain the remaining equations, listed out as Equation (4.2.33) below. A useful
symmetry principle, which allows to reduce the number of calculations by half,
is to note that under the interchange of es with e4 the underlined rotation
coefficients (4.1.14) are exchanged with the non-underlined ones. On the other
hand, the null components of the tensor d transform as follows:

aea, pep,
B —p, o —0. (4.2.30)

A convenient identity in the relevant manipulations is

V.ea = —2feear = —(Ce+ € eas - (4.2.31)

as well as
Vel=0. (4.2.32)

The full set of equations which are obtained by the doubly-null decompo-
sition of Equation (4.2.7) reads?

Pio = —ptria— 5.0+ (2 — 20)a — La(V)a

~3(Xp —X0) — (4i) — O)BsB +2J (-, €3) (4.2.33a)
D = 2608 — diva+ 208 — a- (7 — 20) + 2a(X)"B + 3(~&p + o)

—J(es, - e3), (4.2.33b)
Dif = —trxB8—Vp+ Vo +2X - 6+ 208 + 3(—ijp + %jo)

+(CH+Op— (¢ + 0o —€-a—a(R)'B+ Jleses ),  (4.2.33¢)
D3p = —;trzp—dfvé— %§'g+(25+§—2ﬁ) B

+28 - B+ SG(X)U +4(0 +w)p + %j334 ; (4.2.33d)
Bip = —strtp+ Bvh— 5% a— 20+ -20) 4

~26- 0~ ga(X)J +4(0 +w)p + %j443 ; (4.2.33e)

*BEquations (4.2.33) are essentially a subset of the Newman-Penrose equations written out
in a tensor formalism. The equations in [14] or in [33] can be obtained from (4.2.33) by
specialisation, and straightforward changes of notation. We note some (inessential) misprints
in the equations in [33].
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Dso = —;U'XO' - d/ﬁ:f*é—i- 2w+ 0)o — %tfc o — 2§ -6

HEH2E—20) B~ 2 pa(®) — galIes, ) (42:336)
Dyjo = —gtrf(a - d//i\v*ﬁ +2@+0)o + %ti o — 26 - B

HE+2—20) -8+ Spa() - 2al (e ) (4.2:339)
D3f = —trxB— Vp+ Vo +2X - §+ 208 + 3(iip + o)

6+ Op— K+ Qo +E-a—a®)B - J(es,es,), (42.33h)
D = 2608+ diva+ 208+ a - (7 — 20) + 2a(X)*B + 3(ép + o)

—J(es,-, e4) (4.2.33)
]2)304 = —%trza + ?@sﬂ + (2w — 20)a — %a(&)*oz

—3(Xp +X0) + (47 — OB+ 2J (-, -, ea) - (4.2.33)

For the convenience of the reader it is appropriate to give a summary of the
notations used: The operators ]2)4 and 17)3 are defined as the orthogonal pro-
jections on S of the D-covariant derivatives along the null directions e3 and
€y: R R

Dseq =T5%aes Dieq =T aes .

In particular
Dsp=Dsp=es(p), D30 =Dso =es(0),

etc., with ]2)3ﬂ and ﬁ)gozab written out explicitly in Equation (4.2.28) and Equa-
tion (4.2.16). Next, ¥ and ¥ are differential operators in directions tangent to
S defined as the orthogonal projection on S of the relevant covariant deriva-
tives in directions tangent to S, c¢f. Equation (4.2.21). We use the symbols
div and d//i:/ to denote the associated “divergence” operators: if X = X%, and
Y = Y%e, ® ¢, then

dvX =¥,X, divy =y, Y%,
This gives
div B = YV, (h™B,) = h™*V, B, + 2B, = h™V,B, + (C+ OB,

similarly
(diva)y := Y, (h*agw) -

We have also set

t.~ab ~ba
X =X -

Recall that a bar over a valence-two tensor denotes its symmetric traceless part,
e.g.
— 1

Xab - 5 {Xab + Xba - thXcdhab} 5
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while
a(x) = £""Xab -

To avoid ambiguities, we emphasize that in Equations (4.2.33) the free slot in
J, whenever occurring, refers to vectors in S, in particular

a(j(e4, *y )) = Eabj4ab s a(j(eg, ’y )) = eabjgab .

Finally the symbol ®, has been defined in Equation (4.2.18).
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4.3 Adaptation of Friedrich’s form of the Einstein
field equations

4.3.1 The conformal field equations

Let § be the physical space-time metric, let § be a function and let g = Q2§ be
the unphysical conformally rescaled counterpart of §. (To make easier reference
to [20, 21, 26, 29], throughout this section the symbol g denotes the unphysical
metric; this is opposite to the conventions used elsewhere in this work.) Con-
sider any frame field e = e* j Oyn such that the g(e;, ) = gix’s are constants.
Using the Einstein vacuum field equations, Friedrich [20,21] has derived a set
of equations for the fields?

o Iy 1 1

e Dilpy d =10, Lz‘jziRij_ERgijv
Q, 5= 1D-DiQ+ L ro
9 8_4 7 24 9

where I';7 ;. denotes the Levi-Civita connection coefficients in the frame ej, while
C" jki, Rij, and R stand, respectively, for the conformal Weyl tensor, the Ricci
tensor, and the Ricci scalar of g. Friedrich’s “conformal field equations” read

lepseq) = (Tp' g =Ty p) e, (4.3.1a)
ep(Tq"j) —eq(Tp’ ;) =200 ;T F g + 2T Ty ¥

=2¢"(p Lgj — 2™ 9jlp Lk + Qd’ jpq, (4.3.1b)
D;d' ji =0, (4.3.1c)
D;Ljx — DjLy = DiQd' 15, (4.3.1d)
D; D = —Q L;j + 5945, (4.3.1e)
Dis = ~Ly;D’Q, (4.3.1f)
605 —-3D;QD'Q = 0. (4.3.1g)

The first equation expresses the fact that the Levi-Civita connection is torsion
free; the second is the definition of the Riemann tensor; the third is the Bianchi
identity assuming that ¢ is Ricci flat. The remaining equations are obtained
by algebraic manipulations from the vacuum Einstein equations, using the con-
formal transformation laws for the various objects at hand. In regions where
2 > 0 the system is equivalent to the vacuum Einstein equations [20, 21].

4.3.2 The conformal equations in terms of conformal connec-
tions

In [26] H. Friedrich has presented a reformulation of his original conformal
field equations, presented above, in terms of objects better adapted to the
conformal approach used. The key idea is to replace the equations for the Levi-
Civita connection by equations involving Weyl connections — for our purposes

3We are grateful to Helmut Friedrich for allowing us to use his tex files.
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we define those as connections of the form (4.1.3). The “generalized conformal
Einstein equations” derived in [26] form a system of equations for the unknown

U= <€“k, L7 g, Ljp = %R(jk) — % Rgj, — iR[jkp d =071 Cljkl) ;

(4.3.2)

where T;7, are the connections coefficients of the Weyl connection D in the

frame ey, }?jk is the Ricci tensor of lA?, C’ijkl is its Weyl tensor, and R= g’k ]fijk;

as elsewhere, round brackets denote symmetrization while square ones denote

antisymmetrization. As before, one introduces an unphysical metric g via the

formula

g—g=29,

where {2 is a conformal factor which will be determined later. The system of
equations derived in [26] reads

[61?7 eq] = (fp : q— IA‘qlp) e, (4.3.3a)
ep(Dy’ ) —eq(Tpiy) = 2000 Ty g — 21, Ty + 268, Ly,

~29" gjip L — 2 5; Lipg +Qd’ jpg ,  (4.3.3D)

ﬁp IA/‘U - ﬁq ﬁp] = sz dl Jpq (433C)

Did i = 0. (4.3.3d)

Here b is the field of one-forms appearing in Equation (4.1.3). To obtain an
evolution system using the equations above, suppose first that a vacuum space-
time (., g) “with a piece of .# T is given, with conformal completion (.Z, §).
For simplicity we shall suppose that all the objects involved are smooth on
A . Let . be a hyperboloidal hypersurface; by definition, this is a smooth
spacelike hypersurface in .# the closure .7 in .# of which intersects smoothly
F*: further it is assumed that .7 is uniformly spacelike up-to-boundary for
the metric g. Recall that a conformal geodesic [43] is a space-time curve z(7),
together with a 1-form b(7) along it, which satisfy the system of ODE’s

D) + S(b), * ,&" &P =0, 4.3.4a
P
- 1 -
(D3b), — §b“ S), " ,aP — Ly, &t =0, (4.3.4b)
where ZNL,,H =3 (Rvu — % o R) is defined in terms of the Ricci tensor and the

Ricci scalar of g.
Because (#,§) is vacuum, Equations (4.3.4a)-(4.3.4b) for a conformal
geodesic s(7) read

Dss = —2b(3)$ + g(s,$)3' (b, ) (4.3.5a)

~ 1

Dgb = b(8)b— §gﬁ(b, b)a(s,-) . (4.3.5b)
From now on we will always require
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From (4.3.5) we have

so that (s, $) remains zero along the conformal geodesics. It follows that the
conformal geodesics considered here are null geodesics for g, with a parametriza-
tion which will not be the affine one in general. One easily verifies that b(s)
and g (b, ) satisfy

9:b(5) = —b(s)%, (4.3.7a)
-8 (b,b) = b(3)g*(b,D) . (4.3.7b)

In particular if b($)|s = 0, then b($) is zero along the geodesics and the pa-
rameter is the affine parameter of the g— geodesic, with Qﬁ(b, b) being constant
along the geodesic. Further, it follows from Equation (4.3.7a) that

3)(r) = 20

OO 1" (4.3.8)

as long as the conformal geodesic exists.

Choose any smooth field e4 of future pointing null vector fields, and any field
of forms b defined along ., and use them as initial values for Equations (4.3.7a)-
(4.3.7b). Solving those equations we obtain a field b defined on a neighbourhood
of .. We then set

D=D+5(b),

which provides a conformal connection on this neighbourhood of ..
Let us return to the conformal completion (.#,g) of (., g), so that

§=0%,

with © being a defining function for .#+ := .. Let Z h) be the associated
conformal completion of (., k), with h = Q%B, where h := §|.» is the metric
induced on . by g, and Qo == Q| 7 is a defining function for 9.#”. The restric-
tion of the metric § to .7 is defined to be h, so that 97 = Q8§|57. Let n be
a future-directed g-unit normal n to .. There exists a unique smooth strictly

positive function a on % such that
eqg =a(n—cs3),

where ¢3 is a h-unit vector field tangent to .. Let {¢;}1<i<s be any h-
orthonormal frame along ., we define a half-null tetrad {e;}1<i<4 there by
setting

€a| , = Ca a=1,2, egy:a_l(n—i—c;a,). (4.3.9)

Let $ be the field of tangents to the above family of conformal geodesics, set

€4 :=S5.
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We propagate the remaining e;’s by ﬁ-parallel transport,
ﬁgei =0 3

it follows from the definition of e4 that this equation holds for ¢ = 4 as well. In
terms of D this gives

Dse; = —b(e)s —b(3)e; + G(5,e)g (b, ) (4.3.10)
which implies
d . o~
Eg(eiae‘j) == _Qb(s)g(elvej) )
so that
92§(€¢,6j)(T) = g(ei,ej)(O), (4.3.11)

where 0 is a solution of

0-(07%) = —2b(5)072%, (4.3.12)
with initial value #(0) = 1. It follows from Equation (4.3.8) that

(1) =14+0b(3)(0)T . (4.3.13)

We define a new metric g by requiring that the tetrad e; be a half-null tetrad
for g in the sense of Equation (4.1.1); equivalently, if #° is a frame dual to e;,
then

g=0'20'+0°26%-20°20* — 20" 2 6% .
It follows from Equation (4.3.9) that ¢ = ¢ along ., and Equation (4.3.11)
implies that there exists a function €2 such that

g=97%.

More precisely, we have

Q(s(1)) = 0(1)(s(0)) (4.3.14)
thus  is determined by the value of ) at the point where the conformal geodesic
s(+) intersects .. Similarly we have

9= (2/%.
If b($)(0) is a smooth strictly positive function on .7, then it follows from
Equations (4.3.13)-(4.3.14) that €/ is a smooth, strictly positive function,
bounded away from zero, for 7 > 0 in a neighbourhood of ., and (replacing
A and ./ by subsets thereof if necessary) the part of (.#, g) lying to the future

of . is a smooth conformal completion of (., g).
Let b; := b(e;); from Equations (4.3.5) and (4.3.10) one obtains

db;

1
(&), ~ -~ ~ )
17 b(8)b; + 59 (b,b)g(ea,€;) . (4.3.15)
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This can be integrated to read

_ ba(0) _
ba(T) = W s a = 1,2 . (4316)
Equations (4.3.7b) and (4.3.8) also give
ot
30, b)(1) = —b(gé)(?(’)i)i(i)l , (4.3.17)

from which one obtains

b3(7) = b5(0) a

T 14+0(5)(0)7 T 2(1+ b(5)(0)7) 7' (b,b)(0)g(e3, €4)(0) . (4.3.18)

In the above construction the initial value of the field e4 along . was
completely arbitrary, it is convenient to restrict that freedom as follows: Let x
be any defining function for 9.7 on .¥ and let xy be such that the level sets
Y of © are smooth two dimensional submanifolds for 0 < x < xy. As above n
is the field of g-unit normals to . defined along ., let m be the field of h-unit
vectors which are tangent to ., normal to the .%’s, pointing away from . on
0 (thus m-x < 0 ). Let a be any strictly positive function on . and set

ea=e_:=aln—m), eL=e3:=a (n+m), (4.3.19)

and ey, a = 1,2 — any (locally defined) field of orthonormal vector field tangent
to the .#,’s. Letting by be any field of one forms defined along ., the hyper-
surfaces .Z, are defined by shooting conformal geodesics from the .7’s, with
initial velocity #(0) = e_, and with b(0) = by. Without loss of generality the
time-parameter range can be assumed to be 7 € [0, 79|, with a 7y small enough.
Further decreasing 7y if necessary, the .#,"’s will form a smooth foliation, with
leaves diffeomorphic to . x [0, 19].

As already pointed out, the integral curves of e_ are null geodesics, and
by construction they are normal to the two-dimensional surfaces .7,. It is a
standard fact in Lorentzian geometry that the resulting hypersurfaces .#," are
null. The field e_ = ¢4 is thus a ﬁ—auto—parallel, hypersurface-orthogonal, null
vector field defined on

.//[0735077.0} = U:ce[(),zo]f;:r ~ [0, zg] x 0 x [0, 7] - (4.3.20)

We define a coordinate system on .#]q 4, -, by setting 7 =0 on .. Let v* be
any local coordinates on 0.%, we propagate them to a neighbourhood of 0.
in . in any way to obtain a local coordinate system (z,v%) near 0.. We
then Lie-drag x and the local coordinates v® along the null conformal geodesics
s(7), that is x and the v*’s are defined on .#|g 4, -, as those solutions of the
equations

e_(v*)=0, e_(x)=0

which assume the obvious initial values on .. Clearly e_ must be proportional
to 0r = %, and one easily checks that in fact

e_ =0, . (4.3.21)
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Since e_ is a field of null vectors tangent to the null hypersurfaces .Z,", every
vector orthogonal to e_ is also tangent to .#,. In particular we obtain that
the e,’s, a = 1,2 are tangent to .#,"; equivalently, if in the current coordinate
system the e;’s are written as e!'d),, we obtain

et =0. (4.3.22)

a

The fact that the e;’s are lA)—parallel implies that
I,;=0. (4.3.23)

Recall, now, that the conformal geodesics s(7) and the associated connections
D are invariants of the conformal structure of g, in the following sense: if g
is rescaled by a conformal factor ©72, then a conformal geodesic of g remains
a conformal geodesic for ©72¢g, with the field b replaced by b + ©~'dO. This
follows immediately from the formulae of Appendix A.1. It follows from that
the tensor field ﬁjk defined in Equation (4.3.2) satisfies

Lyj=0. (4.3.24)

Equations (4.3.21), (4.3.23) and (4.3.24) allow us to obtain from Equations (4.3.3a)-
(4.3.3c) the following set of ODE’s:

Oe .
8—: = —Iylae, (4.3.25a)
ory " ; .
5 = DTt a diLy
— 9" gja Lap + 0% Laa + Qd' jugq , (4.3.25D)
0Ly .
S = bd g, (4.3.25¢)

The above have to be supplemented by an evolution equation for d jaq- This
last equation will be obtained by considering the null decomposition (4.2.2) of
this tensor. Before passing to a detailed analysis of this issue, let us make some
comments on our strategy here.

First, Equations (4.3.25) together with Equation (4.3.3d) for d' j,,, with
Equations (4.3.8), (4.3.16)-(4.3.18) for b; and with (4.3.14) for Q do form a
closed system of equations. Our aim in what follows is to use those equations
to obtain a prior: estimates for solutions of Einstein equations. Existence for
a sufficiently long time — so that .# includes a whole "piece of .# 7
then follow by usual continuation-of-solutions arguments, presented in detail in
Section 5.5 below.

Next, the above equations hold as well when

— will

~

D=0D — Q=0Q,, b=01d0. (4.3.26)

The whole formalism is somewhat simpler in this case; in particular no hat-
ted connection coefficients are needed, the raising and the lowering of indices
commutes with covariant differentiation, etc. However, a formulation in which
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b’s other than in (4.3.26) are allowed has the esthetic advantage that it reflects
the inherent conformal freedom existing in the conformal formulation of the
problem. In particular any issues related to that freedom will be much easier
to analyse in a setting in which general b’s are allowed. For this reason we have
decided not to restrict ourselves to the case (4.3.26) in most our calculations,
for further reference. However we will soon concentrate on (4.3.26) in our main
analytic results. We note that while the use of a covariant derivative operator
D # D plays a critical role in [29], in our problem at hand it seems only to
play an esthetic one. We also note that when (4.3.26) holds with Qo = z, then
the gradient d€2 of the conformal factor € is null, and Equation (4.3.24) easily
follows from Equations (4.3.1).

Let us pass now to a convenient null reformulation of Equation (4.3.3d).
Consider, first, the null coefficients (4.1.13) of I'; it follows from Equation (4.3.23)
and (4.1.13) that we have

fa=0,=0=0=0. (4.3.27)

Next, let «, 3, etc, be the null components of d, and for reasons which will
become apparent below introduce

=0, B:=8, (4.3.284)
Gi=0, pi=p. (4.3.28b)

The doubly-null form of Equation (4.3.3d) is obtained from Equation (4.2.33) by
obvious specialisation: we insert (4.3.27) in (4.2.33), and rewrite the resulting
equations as follows

Piot gtrka = ~VE0 - za(¥)a—3(Tp —To) + (5.0, (43.299)
DB+ 208 = —diva+208—a- (7 —2)
+2a(%)*B + 3(—€p + o), (4.3.29D)
DB +texf = ~Vp+'Vo+2%-8—a(X)8, (4.3.30a)
Do+ otris = —divi— 5'x a2+ (C - 20) B
_; pa(x) | (4.3.30b)
3 . 1= . .
Dsp+otryp = —divf—ox-a+(C-20)-f+26-6
%a@a , (4.3.300)
Dyp + ;trfcp = divp — %X S — é B — ga(f()a , (4.3.31a)
Dyo + gtrf(a = —divB+ %tz o+ é B+ ;pa(f() , (4.3.31b)
DB +trkB = Yp+'Vo+2%-8+208+3(ip+ o) +& - a
—a(R)"5 (4.3.31c)

Dif+20x8 = diva—2a-C+2a(R)8 (4.3.32a)
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1 o 1
]Z)3C¥ =+ itI'XO( = W@SIB =+ (2@ — 2@)@ — 50,()%)*01

—3(Xp +X0) + (47 — B0 . (4.3.32b)

In these equations the unhatted Christoffel coefficients should be expressed in
terms of the hatted ones using Equations (4.1.17).4

4.3.3 Choices of gauge

Let (#,q) be a maximal globally hyperbolic space-time solution of the vacuum
Einstein equations with initial data on a spacelike hypersurface ¥ which is
supposed to admit a conformal compactification: denoting i the metric induced
by g on ¥ and ¥ = ¥ U 0X, with 0% being a two dimensional manifold, we
suppose there exists a smooth function (020 such that

° (020\32 =0 and d(olo\Tg(p) # 0 for any p € 9%,
o (3, fOLO) is a compact Riemannian manifold with iLO = Q%E

(A hyperboloidal initial data set for the Einstein Equations satisfies these hy-
potheses.) Let us note that we do not suppose at this stage that (.#,g) admit
a conformal completion neither that it contains a piece of .# .

However, we can repeat the construction of the previous section with ¥ =
& from (4.3.4a) to (4.3.22) except that Qq is defined only on ¥ (and so on for
g = Q07) and we do not have a set M 2o With the relation (4.3.20). Now
suppose the physical metric is locally smooth enough (C?(X) is enough), the
compactness of Yy, »o = {p € & | 22 < z(p) < mo} for xp > x2 > 0, implies
the existence of 7% > 0 such that the geodesics s(7) are defined for T € [0, 7 * [,
provided the initial fields b(0) and $ are in L (X, 4,)-

Therefore, we have the following substitute for (4.3.20)

j/[mz,moﬁo] = UZEG[wQ,ZEO]j.TJ’_ ~ [z2, z0] X 0-7 X [0,70] , (4.3.33)

for 1y < Tx.
Now, we will make gauge choices which will simplify some expressions.
Before going further, let us note that dz is null since by construction e4-x =
eq-x=0.

First, we fix b(0) by

2y = Qo, (4.3.34)
b(0) = a'dals,,,, - (4.3.35)

This implies that b(0) is null and b(0)($) = 0, which gives with (4.3.7a-4.3.7b)
that b(7)is null and b(7)($) = 0 for 7 € [0,79]. Then (4.3.15) gives that

b=z ldx, (4.3.36)

4There is a certain amount of freedom which symbols at the right should be decorated with

“0”’s; we shall not be consistent in this respect and change (3’s to (s, etc., according to the
context.
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on Mz, zo,7]> While Equations 4.3.5 become

Dss=0, (4.3.37)
Dsb=0. (4.3.38)

Remark: The conclusion is that our choice of gauge gives us a conformal
connection which is the Levi-Civita connection of the metric ¢ = 272§, and
for the results obtained in this thesis, we could avoid the use of conformal
connections. The point is that we can obtain ordinary differential equations for
L;; with an adapted “null” conformal factor, without introducing the conformal
connections.

Now, the next choices concern the initial data for z, that is to say x|y, = Qo.
We suppose the initial conformal factor can be chosen as a Gaussian function,
which is explicited in the following lemma :

Lemma 4.3.1 Suppose ilo € Cx(X), and suppose that the associated physical
initial data (3, hyj, K;;) satisfy

K, =3

Then there exists =, a smooth function on ¥ positive on ¥, such that

e 1 is defined on a neighbourhood of 9% and ¥;, = {p € ¥ | z(p) < =1} is
diffeomorphic to [0, z1] x X for some z; > 0 small enough;

(] I‘|32 =0;
e hy = 22h is a Riemannian metric on X;

° h%(dm\g,dm\g) = 1, where h(ﬁ) is the dual metric of hy and dz|ry is the
differential of z on ©,°

. de‘bmd:z:?pz = 0, where V is the Levi-Civita connection associated to kg and
dz’ is the hgy-gradiant of x.

So far, this result is justified for initial data metric which is sufficiently differen-

tiable, say smooth. There is little doubt that this construction can be repeated

for polyhomogeneous initial data, or initial data in a finite weighted Sobolev

differentiability class. We have not examined this question in detail, and we are

planning to remove this choice of gauge soon.
PROOF: See [4, Lemma 2.1]. O

From now we have on ., 4,7+,
b=a"tdx, Q=uz. (4.3.39)

There remains some freedom in the choice of the coordinate system. The
natural choice is to consider Gaussian coordinate systems (z,v“) on X, where

®There is no use in the notation dz|rs within the lemma since x in defined on X, but later
we will use dz for z defined on a piece of the space-time . .
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dz|’ps, - v4 = 0. The coordinate systems (x,v?,7) where z,v" are Lie dragged

along the geodesics s(7), will be called x, T-adapted coordinates. We will denote

)
% = 5 (4.3.40)

Further, our condition on x|s gives on ¥ :

m = —0, (4.3.41)
n = 0 —0g. (4.3.42)
We set
es(0) = 0r, (4.3.43)
es(0) = 0r — 20, (4.3.44)

which correspond to the choice a = 1 in (4.3.19). We will need the precise form
of some coefficients of eé‘ . First, we note

eo, = 0-, (4.3.45a)

e. = 0, (4.3.45Db)

O-e5 = 0, (4.3.45c¢)

where the last equation is a consequence of 0,e§ = —F334e§. At {7 = 0} we set
e5 =—2, (4.3.46)

and it follows from Equation (4.3.45¢) that Equation (4.3.46) will hold through-
out. Moreover we have the evolution equations,

O-e5 = —2w—2ny , (4.3.47a)
drey = —2n%ed (4.3.47b)
orel = (o —Xa€f , (4.3.47c¢)
redt = —xlelt. (4.3.47d)

In (4.3.47c) the equation ¢ = —( has been used.
Let us turn our attention now to the connection coefficients; recall that in
the current gauge Equation (4.3.27) holds, as well as

¢=—C, V= —w. (4.3.48)

The vectors e, ea are tangent to the hypersurfaces {x = r}, and g(eq4, [eq, €p]) =
0, so summarising we obtain

Xab =  Xba > (43493,

a2l
IS}

Il
@)
—~
e
w
N
Ne)
=

1=
1
o O
NI

¢ 208
S B
[o NS

N e e e N N

@ < €
I
|
€



96 CHAPTER 4. EINSTEIN EQUATIONS - THE SETUP

Further
Liy =Ly =0, (4.3.50)

which follows from our choice of gauge, cf. Equation (4.3.24), and from the sym-
metry of L;;; indeed, metricity of D implies that R;;; = 0 in Equation (A.1.4).
This shows that the Ly term in Equation (4.3.25b) vanishes, and a double-null
decomposition of the evolution equations (4.3.25b) for the NP coefficients gives

OrXa" = —XaeX” — 200", (4.3.51a)
Orxa® = XX+ 2pdl + woe, +2L,° (4.3.51Db)
0:Cc = —XaCe— 2P, (4.3.51c)
0:§, = —NXeat Lga—20,, (4.3.51d)
Orla = —N"Xea — 2fa , (4.3.51e)
Orw = n°Cc+zp, (4.3.51f)
Ta’e = —Xa"Tde+ zepBa (4.3.51g)
0-I's"y, = —=2T.%n° — 2z, . (4.3.51h)

It follows that we also have

o-try = —Xx.X, (4.3.52a)
OXab = —XXap — TQab (4.3.52b)
Ortry = —x.X+2zp+2L,", (4.3.52¢)
87’&[“)} = Xc[axcb] + T0Eqyp - (4352(1)

Consider, next, L;;; Equation (4.3.50) shows that the only possibly non-zero
components thereof are Lgp, L3, and Lss. If follows from Equations (4.3.45)-
(4.3.46) that

bi = <b, €i> — —2.%_1(5? s

and Equation (4.3.25¢) gives the following evolution equation for the null com-

ponent Lss:
87L33 = 4p . (4353)

From Equation (A.1.7) (recall that L;; = 0) one obtains the following explicit
expressions for the remaining L;;’s:

Loy = = 'Xab (4.3.54a)
L3, = 2z 'n,. (4.3.54b)

This leads to the following form of (4.3.51b) and (4.3.51d):

OrXab = —Xa“Xeb + TPGab + TOEap + 27 Xab » (4.3.55a)
0,8, = —MeXa+ 22 g — 2. (4.3.55b)

In this choice of gauge, the Bianchi equations become

1
a, = Dia+ Ftrxe
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= —V®8-3(xp—"X0) +(Bsf, (4.3.56a)
By = Paf+ Qtrﬁ

= —diva— 2wl —a- (n—2¢) +2a(x)*B + 3(—Ep + o) (4.3.56b)
ézx a D‘*é + trxé

= —-Vp+Vo+2x 3, (4.3.57a)
. . 3.
o3 = Dso+ QUXU

= —diviB - %Y o — 26 B+ (C—2n) B - %pa(x) . (4.3.57Dh)
ps = Dapt Sirxp

o 1 3

= —div-5X-a+((=2)-f+2-f+zalyo,  (4.357c)
pa = Dap+ gtrxp

= divp - %X- a+¢-g, (4.3.58a)
o4 = Dyo+ gtrxa

= —diviB+ %X o=, (4.3.58b)

Bs = 3B +trxs
= Vp+ Vo +2x-B+2wB+3(np+"o) + & a—a(x)4.3.58¢c)

ﬂo4 = ]Z)4BO + 2trx6°
= diva+2a-(+2a(x)B, (4.3.59a)

1
o3 = ]Z)BOH‘?UIXO‘

=3(Xp + Xo) + (40 + )®sf3 . (4.3.59b)

4.4 Bianchi equations and symmetric hyperbolic sys-
tems

We shall say that a system of first order PDE’s for unknowns f, sections of a
Riemannian bundle with scalar product (-, -), is symmetric hyperbolic if in local
coordinates its principal part can be written in the form

AL f
with A* — symmetric for the scalar product (-, -):
(f, Alg) = (A", g) .

One further assumes that the set of covectors X, € T*.# such that A*X, is
a strictly positif endomorphism of the bundle of the f’s is non-empty at each
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point p € .#. Such covectors are said to be A*-timelike future directed. An
exteriorally oriented hypersurface is said to be A*-spacelike, or simply spacelike,
if its field of oriented co-normals n,, is timelike future directed. An exteriorally
oriented hypersurface is said to be locally A*-acausal if A¥n,, is non-negative.
To every symmetric hyperbolic system there is associated an energy-momentum
vector

EM() = (fAM]) | (4.4.1)

which is used to derive energy inequalities, ¢f. Section 5.3. Let us show that the
principal part of each of the systems (4.3.29)-(4.3.32) is symmetric hyperbolic
when the scalar products are appropriately chosen.

1. The (a,3) equations (4.3.29): We have a9 = g, @] = —ayy hence

the pair (a,8) can be parametrized by f = (a1, 49,3,,5,). Equa-

tion (4.3.29) can be rewritten as

Arof + Af = F, (4.4.2)
with
€4 0 €1 —e€2
0 eq e9 e1
o —
A*9, 1 e e 0 | (4.4.3)
—ey €1 0 €3
which is obviously symmetric with respect to the scalar product
(f,f) = o +al+5+6] (4.4.42)
1 bd b
= Sh*h auaq + 15,5, . (4.4.4Db)

The associated energy-momentum vector is
m 1 acy bd I abycd © ab ©
EMa, B) = §h R agpacqey + 2hhB ayeeq +h™B Bres . (4.4.5)

Straightforward algebra shows that a hypersurface is A*-spacelike if and
only if it is spacelike with respect to the space-time metric g; it is A*-
locally acausal if and only if it is non-timelike with respect to the space-
time metric ¢g. In fact, for any covector n = n;0" which is non-spacelike
and satisfies ng > 0, ny > 0, and for any A > 0 we have

1 — )2
&M, B)n,, = %hwhbdgabgcd
A ab \/n_3 a,b A \/n_3
e T N B gt Tx )
n3 a a
+3 (A = nna) BB, . (4.4.6)

which explicitly shows that &* can be used to control the L? norm of o
and 3 on any uniformly spacelike hypersurface, by choosing A so that

nan® +e <A< —e+——, €>0. (4.4.7)
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Once the symmetric hyperbolic character of (4.3.29) has been established,
it is convenient to drop the identification of f with (a;;, a9, 3,,5,), and
to consider f as the couple («, 3), where o and /3 have their usual tensorial
representation; in that case the scalar product_is given by (4.4.4b).

Now, we will need evaluate the expression d,, (/| det g|&*)/+/| det g|) which
appears in the energy identity considered in Section 5.3. For this purpose

it is convenient to rewrite (4.4.2) as
AV, f+Bf =TF, (4.4.8)

using a covariant derivative V which is compatible with the scalar product
(,-) and with the density character of the (odd) form +/| det g|6+0,, |dz* A
---dxz™! in a sense made clear by the following:

Ou((f, A" f)/Tdetg]) = 2(f, AV, f))/Tdetg . (4.4.9)

A straightforward calculation (cf., e.g., the calculation in Equation (4.4.14)
below) shows that the following choice will satisfy this requirement:

AWM<E)=(@“@g%WM>’

05a(2) (i st
v, ( % > _ ( Wg ) ‘ (4.4.10)

2. The (3, (5,/)) equations (4.3.30): The analysis of (4.3.30) is obtained

by obvious renamings and permutations from that of (4.3.31):

3. The ((p,0), 3) equations (4.3.31): Weset f = ((p,0), ) = (p, 0, b1, B2).
Equation (4.3.31) can be rewritten in the form (4.4.2) with

€4 0 —€1 —€9
0 eq4 —es e1

Ly, =

A9, I (4.4.11)
—e€9 €1 0 €3

which is obviously symmetric with respect to the scalar product

(f.f)y = pPP+o>+81+53
P2+ 0%+ h®B,p, .

The associated energy-momentum vector is

EM(p,0),8) = (p° + %)ely — 20h™ Buel, + 200" Byel) + h® Bafpely .
(4.4.12)
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We can rewrite (4.4.12) in a form analogous to (4.4.6) with any A € R and
any n,, timelike future directed (so that ng > 0, ng > 0, 2n3n4+nan <

0):
_ 2
Elny, = (p2+02)7n3n4 2
n3
P rab \/n_3 a, b P \/72—3
2({ A—=h" — o ——hab — 57 Da
§ <A¢n—3h o) <A¢n—h‘“’ g )
g ab \/_3* a, b \/_3*
2 T — T a
<A¢n—3h 2\ O )(Arh‘“ o)
T3 (N2 — ) BafB” . (4.4.13)

A

It follows as before that we can control the norm L? of p, ¢ and 3 over
any uniformly spacelike hypersurface by choosing A as in Equation (4.4.7).
One can also check that a hypersurface is A¥-spacelike for the system
associated to (4.4.11) if and only if it is spacelike for the metric g.

Let us evaluate the expression a“(gu \/m ) = D; yd \/m :
D& = €8+ T E"
= e (p?+0%) + 5. (BBufy) — 2ea.(ph™ By — ohB,)
+T44 (0% 4 02) — T4t (200 3, — 20h%*3,)
+F333(h“”ﬂaﬁb> — T3%,(20h By — 200™B,)
+T0%(p* + 0%) + Ta®3h BBy — 2To" c(ph"Be — oh**Be)

(v
= 2(p.0),e1(p,0) + 5(Ts's + Tu)(p,))

+2h (D3 Be + 1( To% + T'5%3)Bc)Ba

—2(eq-p)h™ By + 2(eq.0)h*3,
—2(eq-3" + Ta5° + (Ta*a +T3%2)3%)p
+2(€a *ﬁa +T, a *3C (F44a + F33a)*ﬂa)0'
— 2AVU,UY (4.4.14)

with

A, ( (p,0) ) _ ( (Da + v+ 5trx)(p, 0) ) 7

0
Agv%( (p,ﬂ@ ) ( (lbs+v0+ 3trx) > ’
Ve, ( (p’;) ) = < W@gej((pq; i)g)/)’a ) . (4.4.15)

4. The (3,a) equations (4.3.32): The analysis of (4.3.32) is obtained by
obvious renamings and permutations from that of (4.3.29), done above.
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5.1 Construction of the functional spaces on space-
time

Let .# be a spacetime such that those described in 4.3.3. In particular, all the
conditions and gauge choices of 4.3.3 are satisfied. There exists ¢ > 0 such that
Mgy o) C A for any 0 < z9 < z9. We recall

Jr=0, (5.1.1)
We define the following subset of .#,, ,, 4 for any x1 €]z, x| :
Myt ={p€ M |22<z<21, 2(p)+37(p) <21, 0<7<t}. (5.1.2)

The (completely arbitrary) choice of the factor 3 appearing in the equations
above is motivated as follows: the coordinates here should be thought of as
an approximation of the corresponding coordinates in Minkowski space-time
of Chapter 3. We will be using the Stokes theorem on .#,, ;, and the causal
character of its boundary will determine the sign of the various terms which
will result. In the Minkowskian case the sets {z + 27 = const} were null
hypersurfaces, but in our case this does not need to be true anymore. On
the other hand, the hypersurfaces {x + 37 = const} are space-like in Minkowski
space-time, and will turn out to be spacelike in our case as well; this is sufficient
for our purposes.
We have the natural foliation

'%$27$1,t = U M:vg,xl—?n' X {T} s (513)

0<r<t
where M, 5, —3- is a subset of ¥ such that
ro < ax <z —37. (5.1.4)

We denote h,; = h(1) = g|Mz2@173TX{T}, d" i the element volume associated,
and for any function f over 44, 4, +,

(7)) = FlMay y 3o x{r} - (5.1.5)

As in Section 4.3.3 we consider a finite number of “Gaussian” coordinates
(z,v4) the domains of which cover M,, x {0}; here M,, is as in (3.2.1a).
Let (€, (z,v%)) be such a coordinate system on the initial hypersurface, with
Q; C M, x{0}. We set

M;2,!B1—3T = Oin{zy <z < a9 —37), (5.1.6a)
'%;;27317171f = U M£2,11—3T X {T} . (516b)
T€[0,t]

Then we have the x,7-adapted coordinate system (.Z, ,, ;. (z,v4,7)) ( with
Ovd = 0) and we have a covering of .#;, , + by a finite x, 7—adapted coordi-
nates class.
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Remark: We will denote (2#) = (z,v%,7) and (2°) = (x,v4), the respective
coordinates systems on .y, 5, + and My, 5, _3;.

Remark: We can construct a partition of unity ¢; associated to the . o
well adapted to our coordinates : First we take a partition of unity ¢; on 9%
associated with a covering

O; = Q; N 0% (5.1.7)

of 93. Then we propagate to My, x {0} and to Ay, 5, + with

Gil sraux{oy = @i (5.1.8)
Ozpi = 0, (5.1.9)
Orp; = 0. (5.1.10)

Using the ¢;’s we define the operators DP as the collection of the following
objects:

Dl = o, (5.1.11)
D7 = 000%0% (5.1.12)

where (z,v%,v3) is the coordinate system of Q7 = M}

w9.21—37- Lhe reader is
warned that the operators D here are not the same as those used in the previous
chapter as defined after Equation (3.2.8). In every sum over D? below an
implicit sum over the i’s is understood. Strictly speaking, we should include
an index 7 on the DP’s, but we shall not to do that in order not to overburden
notation.

Then, we have over any coordinate patch

85:2 Z c(v2, 73, v) i 0 0307 (5.1.13)
i y24+y3=P2+03
so that
F= > cnpoHD, (5.1.14)
I’Y‘:|/B|771:/Bl

where ¢ is a smooth in v4.

For any vector field Y on .4, 4, +, we define ||Y (1) by

H%ﬂ(MIQ,zl—ii‘r)

1Y (m)lI?, = (5.1.15)

z ,T1— 37’)

Z/ Z 2042011 ((DﬁYT(T))Q

7 Mzg,zlfih' |ﬁ‘§k

+ (DPY"(r)? + > (DY A(r ) d" 110 (5.1.16)
A=1

where we sum over all the coordinate patches (Mi,%xl_gT) of the z, 7—adapted

coordinates class, with d g being the volume element associated to hg and ¢;
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(0 < ¢; < 1) being a partition of unity of the ; (and so of the M} 2.1 —37)> and
with Y = Y0, + Y404 4+ Y70,. We can define similarly 1Y (7)llge (a1
2 _
YO oy =

9, 11737')

supZ/ Z p2ot2h—1 ((DﬁYT(T))2

+ (DPY™(7) Z (DPYA(r ) d" 1o (5.1.17)

12,11737'):

12 x1—3T

where I,, has been defined in Equation (3.2.19), and O; in Equation (5.1.7).
We set

- I
1Y Ol ey 5y = 590 IV Ollpars, L, (5.1.18)
HY(T)HBQ(MIQ@l,gT) = ZSUPHY ||<ga(M; oy —3r"Mn) 7 (5.1.19)

and so on for the L°° norm.

In the same way, we define HYH%B(//; ) replacing Mm2 21-37 D
k 2,21,

and so on for the ‘Kk’g and g,f spaces. Note we will define similar norms in a
more geometrical way for some tensors fields over Riemannian bundles of .7 .

y ML

2,21,t

5.2 The boot-strap hypotheses on the tetrad fields,
and some consequences

We will require some properties for the space-time. We will be considering null
tetrads as in Section 4.3.3, on which some precise functional requirements will
be imposed. Our goal is to show that a certain set of conditions on the tetrads
is compatible with the evolution of the Weyl tensor via the equations derived
in Chapter 4. We will then use the continuity method to obtain existence of
the solutions of the vacuum Einstein equations with initial data in weighted
Sobolev spaces, with conformal singularities at .#.

Throughout this section k£ will denote an integer, while € is a real number
in )0, 1.

¢'1) We suppose that there exists constants t; > 0, Cg, such thate_ = e =
0- and ey = e3 (defined in Section 4.3.3) can be written e, =e4 + (0r — 20,),
with for all 7 € [0, 4]

e+ (Tt (Magoy—50) T (D2 (010y 0,5y < Cls s (5.2.1)
E+’T:O = 0 5 (522)
@ =0, (5.2.3)

¢2) The (e,) which complete e3, e4 in a half null tetrad is such that we can
write
€q = €4+ €q , (5.2.4)

with the following conditions:
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e First, we require that
oz, v, 7) = eq(z,v4,0) (5.2.5)

( we reminds (0, €,) is an orthonormal field of (M, x {0}, hy) and the
eq are tangent to the level set of ), with €,(0) € GP(M,,). Let us note
that we have by hypothesis

€0 = e2pa . (5.2.6)
Further we assume the existence of a constant Ce¢, such that
1€a(0)llgo + l1éa(0)lzee + [[1€2(0)] [z < Ce, , (5.2.7)

If k£ > 2 the second term above would be controlled by the first, however,
we do not make any restrictions on k at this stage.

e There exists Cg, and t2 > 0 such that for any 7 € [0, t2],

[eal) e (Mg oy -3y T €Ty < Coy s (5.2.8)
2.(0)=0. (5.2.9)
Let tx be defined by
t« = min(ty, ta) . (5.2.10)
For k > 3, the conditions €1 — €2) imply there exists Ce(Csg,, Ce, ,Cs) such

that

3
> p {IE() g + Bl +lles(r)lg } < Cev (5:2.00)
=1 <

for all 7 € [0, t«], and
&(0)=0. (5.2.12)

Here, and throughout this chapter, we use the generic symbol C; to denote a
constant which arises out of the functional inequalities in weighted spaces of
Section 3.2 such as Sobolev inequalities, or Moser inequalities.

Such a tetrad will be called a z, 7- compatible null tetrad. To simplify some
wording, we will denote

é4 = 64237—, (5.2.13)
e, = 0, (5.2.14)
é3 = Op —20, . (5.2.15)

Lemma 5.2.1 Under ¥1)-42) we have on M,, x {0},

0 0 1
he fag O
hO,x hO,:r 0
0 0 -1

g = , (5.2.16)

_ o O O
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with ho . = g|rs, ., where So = {p € My, x {0} |z(p) = z} (héf = efe{fg“b),
so that

19" oo (a, g0y < C(Ce) (5.2.17)

Further, there exists ¢;, > 0 such that [hé‘f] > cplda; g"(0) on My, x {0} is of
the form

1 0 0 1
0 hozoy homeg O
Juv = ' ’ , (5.2.18)
! 0 h0,123 hozgs 0
1 0 0 0
and
1 0 0
hsy =1 0 hozyy howog , (5.2.19)
0 h(],:vgg hO,mgg
and we have the estimates
9w llLoe (ar,, <oy < C(Ce,) (5.2.20)
[hoyllLeoar,, x oy < C(Ce,) - (5.2.21)

(Recall that (29) = (z,v4), with the indices A, B running from two to three and
the indices d,7 running from one to three.) If we denote by h%7 the matrix inverse
to hs,, then it also holds that

”hMHLOO(leX{O}) < C(Ce° ) : (5-222)
Besides, denoting Vy = +/det h(0)s, (i.e., Vodrdv?dv? is the volume element of
M, x {0}"), we have
C1(Ce) < |Wollpe < C(Ce) . (5.2.23)
PROOF: This follows immediately from the hypotheses made using g" = g e*;e” s
with g% as at the beginning of Section ??. O
We denote

Ce = Y _lléillgoar,, xqoy) + 1€ill e aty, wgop) + NET oo (ary, xoy) - (5:2:24)

¢'3) We suppose there exists a constant C7 such that, for all 0 < 7 < tx,
1078 (7) || Lo + 10-8s(7) |52 + [|0-€:(7) |1 < CF (5.2.25)

Remark: Since |[07€] || < 1]|0:€i|4;, the first term in (5.2.25) is controlled
by the second one, so that (5.2.25) has some redundancy; we have added this
term there in order to avoid the appearance of complicated constants later.
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Lemma 5.2.2 There exists C(Cg, C¢) bounded on bounded sets of variable, such
that for all 7 € [0, tx],

9" ()| L= + [|h27 (7)==

10 (7) | oe + (107277 (7) |

where (z#) = (z,v4,7) and (2°) = (z,v?). Further there exists T}(Cs, C=,CT)
e

such that for all 0 < 7 < min(tx,T3), [ef(7)], ¢"*(7) and h®Y(7) are invertibl
with the estimates

C(Cs, Cs) (5.2.26

)
CeC(Ce, Ce) (5.2.27)

<
<

16},]| o < C(Ce, Cs) (5.2.28)

where [0;] = [e!]71,

1RO (P) o + 9™ (D)l Lo + g (T)llzoe + [lhoy (T) = < C(Ce, Co)
(5.2.29)
with §,v = 1,2,3 and C being a constant bounded over bounded sets of variable.
Proor: We write
g = efe]”-gij , (5.2.30)
gw = 0.009i5 , (5.2.31)

where 0/3 is the inverse matrix of e!’. The first equation gives the estimates
(5.2.26). The matrix [e/'](0)+h is clearly invertible for ||| small enough. Thus,
the hypothese (5.2.25) ensures that there exists T}(Cz, Ce, CT) such [e!](7) is
invertible for 7 € [0,min(¢x,7})]. The equation (5.2.31) gives the remaining
estimates. O

Using the equations of the proof of the last lemma together with the
weighted Moser inequalities one obtains, no details will be given:

Lemma 5.2.3 There exists a constant, C.(Cg¢, Cz, 1, €), such that for any 0 <
7 < min(tx, Ty),

S llei(r) e + leslgoassy oy an) < Ce - (5.2.32)

Further, we have the estimates

g (T)llgo + g (T)llLee < C(Ce) (5.2.33)
1079 (T) s + 107 gy (T)lp - < C(Ce, CF) (5.2.34)
167, (T)llgo + 116}, (Tl < C(Ce), (5.2.35)
10-0,,(7)[loe + 10-0,,(T)ll g2 < C(Ce,CT), (5.2.36)

and so on for h(T).

In the energy estimates the volume element associated to the metric g ap-
pears, the next result allows us to relate the resulting energies with the Sobolev
spaces constructed in Section 5.1; the proof is a straightforward consequence of
(5.2.29) and is left to the reader:
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Lemma 5.2.4 For any 7 € [0, min(¢x, T)], we have

Cl(Cé, Cg) S VT S CQ(C&, Cg) N (5237)

V, = (/det |hu(7)| , (5.2.38)

and 0 < ¢1 < cp. Besides, for any f € J4% we have

with

CQ_I(Cé,Ce)/ Z x—?a-ﬁ-?ﬁl—l(pﬁf)Q dnﬂT
May o) -3+ x{7} 181<k

S Hf(T)”%a(Mzz,zl—Bf)

<t (Ce, Ce)/ > @ 2D )2 My, (5.2.39)
May 2y —3r x{7} 1B1<k

where dp; := Vydzdv?dv® . An obvious analogue of (5.2.39) holds for f € G¢.

Lemma 5.2.5 Let us define

—ghT
o= (5.2.40)
/_‘gT’T'7
1
N, = : (5.2.41)
N

with "7 = g(dr,d7). Then, with the conditions €0—%3), there exists To(Ce, C7) <
T} (with T} given by Lemma 5.2.4) such that, for all 0 < 7 < min(¢*, Tp),

e« 1/2< N, <2,

o %h&y(o) > hé'y(T) > %hé,’y(o)x

e the hypersurfaces

{p € %12@1,75 | T(p) = TO} , and
{p S ‘%CUQ,Il,t ‘ x(p) + 37_<p) =c, 0<7< min(t*aTO) 70 <z< [El} )
(5.2.42)
are spacelike for all 0 < 79 < min(tx,Tp), and for all ¢ € [0,21] (so that n*
is the unit future pointing normal to {7 = const.}),

and there exists a constant C'(Cz, C7) such that for any 7 € [0, min(¢x, Tp)],

i Losi i .
I+ 5 (85 + Tl Loy 0y < C(Co COIT (5.2.43)
IN-=1] < C(Ce,CO)r. (5.2.44)

(Recall that we use the convention in which latin lower-case indices i, j, etc., are
tetrad indices, so that the index 7 in (5.2.43) is a tetrad one.) Besides, n* satisfies
the estimates

g + 9:n"llgs < C(Ce. C=,CT) (5.2.5)
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Proor: We have
g(dr,dr) = gid;T d;T,
= —(e_~7')(e+-7')+Z(ea-T)2 ,

= —1-e,+) (e).

a

From (5.2.25) we obtain
Orgldr,dr) = —0,8, +2) (0-e)e,
|0-g(dr, dr)] Ol +20Ce,

1
|0.N,| < 5(Cg+2ogcg)N§.

IN

We have
g(dr,dr)(Tr=0)= -1,

so that integrating in time for

we are led to

—1-To(CT +2CIC%) < g(dr,dr)< —1+TH(CI +2CIC%),
1/4 < —g(dr,dr) < 3/4, (5.2.46)

\/gsmsx/i.

Spacelikeness of the level sets of 7 follows from (5.2.46). The estimate on hsy
is derived in a similar way. Next, for 7 < Tj,

and

10, N,| < (CT +2C7C:)V2 . (5.2.47)

On the other hand writing n’ = g“7; N, we find

1
TZB = _§N’T7

1
nt = —5(L+E)N-,
n® = e,N;,,

with the indices here being tetrad indices. This gives with (5.2.47) for any
7 € [0,Tp], there exists a constant C(Cg, C7) such that

|01
0N,

C(Ce Cc)

<
S C(Cg, Cg) :
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Integrating in time gives (5.2.43). Equation (5.2.45) follows from Equations (5.2.40)-
(5.2.41) and Lemma 5.2.3.

For the hypersurface {p € Ay, 4, 1+ | x(p) + 37(p) = 21}, we compute the
norm of the gradient

g(dx + 3dr,dx + 3dr) = g(dz,dz)+ 9g(dr,dT) + 6g(dzx, dr)
1
= 0+9¢g(dr,dr) — 566§e£
= 9g(dr,dr) +6 < —3/4

(recall that g(dz,dz) = 0 by (5.1.1); we have also used (5.2.3), (5.2.13), (5.2.15)
and (5.2.46)), and the result is established. O.

5.3 Energy estimates for a class of hyperbolic sys-
tems in A, ,,

The aim of this section is to derive an energy inequality similar to that of
Proposition 3.4.1, under hypotheses which are compatible with the various sys-
tems extracted out of the vacuum Einstein equations in Chapter 4 — the main
point is to relax the hypothesis (3.4.13) of Chapter 3. While that hypothesis
is relaxed, we impose some other hypotheses here that are more stringent that
those of Section 3.4; this is not necessary, but it simplifies some estimations and
is sufficient for our purposes here.

Let Ny be the space orthogonal to the bundle generated by e, e_, (so that,
with the notations of the previous section, (e,) is a field of frames on Ajp), and
N = N; x Ny with N7 and N, obtained through some cartesian and tensorial
products of Ny and its dual.

APO f+ Af = F (5.3.1)

a first order system, with f a section of N'. We will denote

fe ( i ) , (5.3.2)

with ¢ € N; and ¢ € N;. The Lorentzian metric g induces a Riemannian
metric on Ny, N1, N3 and N (we take the metric product of the metrics of N}
and Ny so that these spaces are orthogonal). These metrics will be denoted
h in both cases. We will write N' = N7 + N, with the decomposition being
orthogonal.

Therefore we can define

(f,f)=nh(ff) - (5.3.3)

Lemma 5.3.1 For a tensor field f in \/, the norms

1 (Pl e =

1/2

> . w7202l N (DOf (1) 0 | (5.3.4)

IBI<k 1t x9,r1—3T ai...an
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1/2
S A N (D (1) (5.3.5)
|,8|§k i M;27zl_37' aj...anN
and
1/2
S e N (0, ()| (5.3.6)
Bl<k i Y Magay—ar a1..an

are equivalent for all 7 € [0, min(¢x, T})], with fg,. 4, being the expression of f in
the tetrad field e, x, 7—adapted.

PRrROOF: The equivalence of (5.3.4) and (5.3.5) follows from the volume estimate
of Lemma 5.2.4; the second equivalence follows from Equation (5.1.14). O

We will make the following assumptions:
HO0) We have
ARY, >0, (5.3.7)
for any future causal vector Y*.
H1) We can write A#9,, = A’e;, with A’ constant, and (e;) being a null tetrad

satisfying the hypotheses made in the previous section.
H?2) We can write

Al = (;1/;2) ’ (5.3.8a)

Af = (2}) , (5.3.8b)

Alf = (ﬁ) : (5.3.8c¢)
_ Bi1¢ + Biay

Af = ( Do+ Do > , (5.3.8d)

where we write !C' for the transpose of a matrix C' to leave room for some
indices on C. We denote by
c* =AY, (5.3.9)

with || 49(|? = sup(y,uy=1(A*U, AU).

H3) There exists a covariant derivative V on N such that
Di(A'U,U) = 2(A'V,U,U) , (5.3.10)

and there exist I's, T4, 'y, T', I such that

N 0

AVsf = <eg‘au¢+rgw+rg > , (5.3.11a)
u /

AV, F = (e4au¢+1(;4¢+r4 ) (5.3.11D)

Ao f = A%l ]+ ( 5,:@ ) . (5.3.11¢)
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Remark: These hypotheses are satisfied in systems such as (4.4.10). In our
application the matrix A® will be symmetric.
H4) There exist constants C4, Cp and Cp such that for all 7 € [0, tx],

[A(T)lIgo + 1 A(T)llgp + [10-A(T) g0 < Ca (5.3.12)
and

ITs(T)llzoe + IT5(7) Lo + ITa(7)ll e
HITL ()L + [T ()l + 1T (Pl < Cr. (5.3.13)

With our hypotheses we have:

Lemma 5.3.2 There exist constants C(Ce,C%), Co(CI,C%), C5(Ce,C*), and
C4(Cg, C7,C?) such that for all 7 € [0, %],

A% (r) g + 1A% ()lgo + 1 A%E5 (7)llgo

A% ()llge + [ A%A(T) g < Ca (5.3.14)

1A% (@) o + 147 (D) o + (A4 ()l < Ca(5.3.15)

10:A47(1) gy + 0- A (T)lgo < Ca(5.3.16)

JA%T (e + 1A% () gy + €L (D + €5 (Dl < Ca(E3.07)
1405 (7)o + A%0rel (P)llgs + 197 (1) e

oL (Mlgr < Ca(5.3.18)

Remark: Let us note that A® = A3e% is constant by Equations (5.2.3) and
(5.2.15).

Remark: In the problem at hand — the Einstein equations or wave equations
— the matrix A% will be constants with norm equal to 1 or 2. Therefore, the
dependance in C'* will be omitted in various estimates. Besides, we will use the
letter C to denote various irrelevant constants, indicating whenever necessary
the dependencies, and the letter Cs to denote the constants from the Sobolev
and Moser-type inequalities.

PRrOOF: The various inequalities are direct consequences of the hypotheses
(5.2.11), (5.2.25) and (5.2.32) on the e;’s and their time derivatives, together
with (5.2.13)-(5.2.15). O

We define the energy associated to the system 5.3.1 :

Gm=Y [ A ), D e (5319

|B1<k ) Mezizr —37

We will need the following lemma to establish the equivalence between the norm
associated to the energy above and the weighted Sobolev norms (5.3.4).
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Lemma 5.3.3 Suppose €1)-¢3) and H1)-H3) are satisfied. Then, there ex-
ists T1(Ces, CT) < Ty (T defined in Lemma 5.2.5), such that, for any 0 < 7 <
min(tx,T7),

3
1/4 S n3 S Z )
3
1/4 < Ty < Z )
“1/8 <3, 15C%, < 1/8. (5.3.20)
Further, for any 7 € [0, min(¢*, 77)], we have
1 (64
gcleH%a(wal,ST) <&(r) < C2Hf\|§f;g(Mz2,zl,sT) ; (5.3.21)

where c¢1, ¢y are the constants of Lemma 5.2.4.

PROOF: For any 0 < 7 < min(¢*, Tp), we have from Equation (5.2.43), Lemma 5.2.5,

1 )
I + 5 (85 + 03) | Lo < O(Ce, G2 - (5.3.22)

12,11—37)
Then, we set
T1 = min . T
' ac’8(CcT+ e )

and we easily check (5.3.20). With the estimates (5.3.20) we obtain (note
A% + A* = 1d) Equation (5.3.21). o.

Lemma 5.3.4 Suppose that k£ > 3, and let f be a solution in H}°*(.#y, 2, 1,) of
(5.3.1). There exists T7(C®, C7,Cs) < T1, where T} is given by Lemma 5.3.3, such
that if f(7) € J*(Myy 2, —3-) for some 7 € [0, min(t*,T7)], then there exists a
constant C5(Cq, Ce, Cs, Ca,C* x1, v, €) such that

10rb(T) e < C5(II@D(T)HLOO+Hf(7)|!9f,g+|!a(7)||%ﬂ,g

BT o + 16 lsg )+ (5.3.23)

k

100 o < Cs (Il + ) oo + Il a-vr2) (5.3.24)

Remarks : 1) The proof below actually establishes Equations (5.3.23)-(5.3.24)
with an ,%‘jco‘_l norm on b, but the above is sufficient for our purposes.
2) We have a weaker estimate which do not require an L* bound on 1)

10=f (P)l| yro—r < C5(ILF (Pl + IIF ()] ygo1) (5.3.25)

with Cf depending upon Ce, Cy, C®, 1, &, bounded on bounded sets of variable.
This estimate is a straightforward consequence of (5.3.28).

Proor: We have

ATO f = —A%0,f — A2Osf — Af+ F (5.3.26)
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with
AT = A3(1+e5) + A* + A% =1d + A%} + A% . (5.3.27)
Because
1
< T/ :=min | T}
T=A mm( Ya ot +02)Cg>
we have
I1d + A%8; + A% > 1— A%,
> 1-(1+C'+cHozTy,
> 3/4,

which implies that A7 is invertible. Then we write over any coordinate patch
alzg,azl—?n"

Orf = —(AT)T'(ATO.f + A%Oaf + Af - F) (5.3.28)

with A% = —2A430,. By Lemma 5.3.2 and by weighted Moser inequalities similar
to Proposition 3.2.2 we have

1A (D) lgo (a1, gy < C(Ce) (5.3.29)

for some increasing function C' (dependance upon the number of patches im-
plicit), and for any 7 € [0, min(¢x,T})]. More precisely, using the structure of
(5.3.27), we have

(A = Id+ 4, (5.3.30)
with
||A|]%ke + HAH(g(} < C(Cg C?) . (5.3.31)
Denoting
— A Axg
A= ( 4n Az ) 5.3.32
< Aoy Ag > ( )
we have
0r¢ _ —A120,7) (@ + Apa+ Apb
87—1/J (2 — Agg)aﬁﬁ b+ Asia + Aggb
—(any At (¢>+A(¢>}, 5.3.33
ey {aton (6 g (5:3.39
which can be written
—A125z¢ (@ +§11a +512b
(2 — Ag2)0 b+ Azra + Azb

L{oaf 0 f
+< Y > + ( o ) , (5.3.34)
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with
IL1(T)llgo + [1L2(T)lIgo + 1€1(T)llgo + lI€2(7)llgo

L1 () Loe + | La(T) 2o + [[e1(T) Lo + [[l2(T)][Le < C'(Ce, O, Ca) -
(5.3.35)

Then, with the weighted Moser inequalities of Proposition 3.2.2 we compute

[A120:9ll e, < [[Ar23)] o

< O (IAzllgy Il + 1Al s o [l )
< O(Ce,C%mr, e a) (Il + [¥llge)
12 = Ao2)0tbll o < (@lbllomge + Col Azl 0l )
< O(Ce.C% Coyrr, ) [0 e
Similarly
[Arzbllge < ColllAsallgy bll ot + [ Ar2llsgolbllgp

< C(CEa Ca,Cs,.ﬁl,()d,ﬁ)(HbH%a—l/Q + ||bH<laﬂOO‘) .

The estimates of remaining terms are straightforward, which gives (5.3.23).
Equation (5.3.24) is starightforward. O

Now, we will derive various inequalities on v and time derivatives of f in
Holder spaces.

Lemma 5.3.5 Let f be a solution in C1°¢(.#y, 4, 4+) of (5.3.1) with —1 < a < 0,
then, for 0 < 7 < min(¢x,77), where T7 is given by Lemma 5.3.4, there exists
Cs(Cz,Ce, Cy,C% 1, ) such that

10:60lleg < Co (IF(llep + lalr) gy + 6 go172)  (5.3.36)

10-0() g = Co (IFDllap + la(mllgp + ()| gasr2) » (5:3.37)

A

and
()| F00 = 19(0)[[ 7
< /0 Co(r =) (I + IF () + [9() 3 ) ds
(5.3.38)

Further, suppose that ¢ > 1+ « and k > 3, where ¢,k are the constants from
(5.2.1) and (5.2.8), then

[20:(7) |7 < [2020(0) |7
+/0 Co(r = &) (1f () log + 1 F (9|50 + 120210 (5) [ 70) ds
(5.3.39)

for 0 < 7 < T, with C}, depending upon (Cz, C¢, C% Ca,21,€, ), bounded on
bounded sets of variable.
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PROOF: The estimates (5.3.36)-(5.3.37) can be proven from (5.3.33) in a straight-
fordward manner. To prove (5.3.38), one writes

(8 — 20, )0 = —€0:1p — €LDarh — A% (en0-¢ + e204¢) — Bai¢p — Bagth + b .

(5.3.40)
Then, from (5.2.1), (5.2.8) and (5.3.36)-(5.3.37), one finds
10- = 202)0 (7)< C(Ce,Ce,Ca, C% a1, 0) (I £(7) 6z
HIF() ) (5.3.41)
Setting ||v||? = (,v), the formula
/24T
glz, v, 7) = gloz+2r,01,0) + / (8r — 20,)g(2v, v, 7 — v + 2/2)dv
/2

= gz +2r,04,0)+ / (9r — 20,)9(21 — 25 + v, 5)ds ,
0

(5.3.42)
valid for any function g € Cglloc, 0<ax <z — 27, leads to
T
lol2@, 0?7 = 2 + 2r, 04, 0) +/ (0, — 200)[2(2r — 25 + 2, 0%, 5)ds .
0
(5.3.43)

Further,

(0r — 20)|[0]|*(z, v, 7) 2((0; — 20, ), ¥)(w, v, 7)

S 2”(67' _26€E)¢(x7UAaT)H ||¢($,UA,T)||
< 22| (7) || L= |97 — 202)9(7) g
where we have written
107 = 20,)9|[(z,v,7) < 2[(0r — 202) 9|50 - (5.3.44)

The last estimate with (5.3.41) gives

1] (z, 0%, 7)< |\¢|\2($+27,UA,0)+/OT($+2(T—S))°“C(Ce,Ce, Ca, C% a1, a)[[9(s)|| Lo %
(IfS)lep +1F () p) ds

< P+ 2n ot 0+ [ (=970 (1) + 1£6) 1 + IFls) ds.

which gives (5.3.38) taking the sup norm over z,v*.

For the last estimate, one computes from (5.3.34),

(0r — 20,)(20p1)) = —Agpa0,0p1p + LA (28, f) + lo(20sf) + 20:(b+ Azra + Aob)
—(0pA2) 2050 + (20, L) OAS + (2802 f .
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One writes

(0 — 20,)(207)) = — (0, A22)10p) + R . (5.3.45)
By (5.3.31) and (5.3.35), we have

|R(T)lze < C(Cg Ce, Ca,C% x1, 0, €) (I f ()l + [ F(7) o) -
For instance the first term is estimated as follows

Csll Al 9(7) g
C(Ce, Ce, CO f(T) |z

|- meaﬁxd}\\%@ <
<

and the term (20,L3)0af :

(20, L") f ()l L3 (7)o L f1.(7) I

<
< O(Ce, C% )l f(T)lle -
On the other hand, from (5.3.31) and € > 1 + a,

(82 Az2) (2029 5o [ A2zl gr+a 20000 Lo

<
< C(Céa Céa Ca7 zy, E)H'waszLOO .

Therefore

(0r — 20,)||20x0 |2 (z, 07, 7) <
C(Ce, Ce, €, Ca, w1, 0, 2% (|20 (7)1 + [1f(llssg + [ F(7) g2 2009 (2, v, 7)

which gives (5.3.39) using (5.3.42).

Proposition 5.3.6 Let —1 < a < —1/2 in R. We suppose the parameter k
appearing in (5.2.1) and (5.2.8) is such that £ > 3. Let x9,x1,t be such that
0 <2z < z1 —t/2. Let f be a solution of (5.3.1) with f(0) € H}°®, to which we
associate the energies

Ei(r) = &)+ ()i~ , (5.3.46)
E(r) = &) + ()i + lzdst(T) |7 | (5.3.47)

where £2(7) is defined in (5.3.19). Under the hypotheses ¢'1)-¢3), H1)-H4),
there exists Cs(C¢, Cs, CI,Cr,C4,C% Cs,x1, v, €), bounded over bounded sets of
variables, such that for all 7 € [0, min(¢*, T7)], where T} is given by Lemma 5.3.4
and tx by (5.2.10),

\‘
2
7N\
0)
Q0
=
N—
+
S
=
&
Qo
S
+
S
\\?9
=9
+
=
¥_w
=9
\
=
N
~_
QL
)
=
o
o
oo
N—
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JACTENCENE ( Ee(5) + 10015 |2

+ 110() 2 + 10052 + ||b<s>||?gg> ds,  (5.3.49)

HOREHOE

/ o1+ (=) (€50

+ [la(s) |50 + Hb(s)!@ﬁ;m + HMS)H%) ds
(5.3.50)

where the last estimate holds only for k > 4 and e > 1 + a.

Remarks : 1) The various energy inequalities and their proofs are still valid
for v = —1/2, provided we replace [|b]| , a-1/2 by [[b]| s there.

2) The condition k > 4 for the last equatlon, a consequence of the need for
an estimate of f in 47" in Lemma 5.3.5 to obtain an estimate on 0.1/, -1,
is somewhat artificial. It can be avoided under further initial condition by
estimating [|0 | s

PROOF: Since our hypotheses imply that (5.3.1) is a symmetric hyperbolic
system, there exists a solution with f(0) € H}°°. First we suppose f(0) €
H)°¢\ (Mg, ;) and @3 > 0. Then f(7) € H};fl(Mm,ml,gT) and 0, f(1) €
H°®(My, 4, —3) for any 7 € [0, min(¢*, T7)]. We will obtain weighted estimates
for f in a region ., 4, 1+ of the space time. We set

Xt= " g 201200 Dif AMDOf)
|BI<k

Now let us apply Stokes theorem to the piece of space-time My, », . Noting
that the hypersurfaces {z = cst} and {z = 37} are spacelike or null, one finds

with HO),
0< / XHdS,, , (5.3.51)
{m:$2}mMz2,m1,‘r

with dS, being the volume element induced on {x = x2} N My, 4, r, and simi-
larly for the hypersurface {x = 37}. Therefore the Stokes theorem gives

£9(r) < E2(0 / / N.D, X" d"p. ds . (5.3.52)
s=0 Macg x1—3s

With our hypotheses we have

D, X" = Z (—2a — 14 201 (ez.x)z 227225 (DP £ A3DP f)
18 <k
+2 ) a2 PDOf AT DO f) (5.3.53)

18I<k
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(¢f. Equation (5.3.10)). Then we write

, 4 [yDP¢ + D5y

ix7. Db _ Qb 3 4
A, D f A'el'9,DP f + ( P4y + T4D 6 + "D ,(5.3.54)
with

A9, D f = DO(ALDf)— Y cly, BA(De) (D0, f)

(0,...,0)<~<p
— Al DR 9,]f . (5.3.55)
We have using (5.1.14)
[D%,0,] = 0, (5.3.56a)
D% 0,] = 0, (5.3.56b)
[D°,04] = =) (Bapi)d®= > d(B.v,v")D7, (5.3.56c)
i [vI=18],71=p1
with d smooth in v#. Hence,
ADPo)f = ) calByvi0?)A%lDIf, (5.3.57)
=18l v1=B1

so that there exist smooth functions ¢4 depending upon angular variables
such that

S eSO, GIL D) =Y a0, (4D D)
|BI<k Br="1,|B|=I~I<k

Writing

D X" = Y (2a+1-28)a 2 2 20DAf APDPF)

18I <k

+2 ) a2 Dif Aletg, DO f)
1B <k

+2 ) o722 (ply 1, DP g + Ty Dy + TDPy)
18I<k

+2 ) 222Dy Ty DOy 4+ T5DP¢ + T'DAg)
18I <k

and using what precedes one finds, after some rearrangements,
D, XV = Ni+S+G+T,+Ta+T-+R, (5.3.58a)

with the splitting motivated as follows: Nj contains the negative terms from
Equation (5.3.53), which will help us to estimate some of the error terms; S
contains the first term from Equation (5.3.48), which will be worked upon using
the field equations; G' contains the terms from Equation (5.3.54) involving the
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I'"s, and which can be directly estimated; the 7),’s arise from the second and
third term in Equation (5.3.48) and contain all the terms in 0, f from there.
More precisely:

Ny = =2 (20— 2B + 1)z 220 -2(DOy Dy | (5.3.59a)
181<k
S = Y a0l DA, f)) (5.3.59b)
1B1<k
G = Y gt <<D%,F4D%>+<D%,r39%> (5.3.59¢)
1B1<k

(DB, (T + T)DPp) + (DPy, (T + r’)D%>) (5.3.59d)

The T}, terms require some work. Consider, first, the terms in Equation (5.3.48)

which explicitly contain 9, f; writing 3 as § + and using e = —267 we obtain
T, = — Z Z x—2a+251+271—1 <D5+’yf’ Al (DVef)(D‘S@xf)} 7
6]<k—10<]y|<k—]d]
= 0.

The remaining 7},’s read

Ty o= = 3 D @ rEREMIUDI L AYDIE)(D'OaS))
6] <k—10<|y|<k—]d|

%S e ph f A (D) (DO, )
6] <k—10<|y|<k—|d]|

_ Z Py 2BV JagADr £ DRy (5.3.60a)
Br="1,|8l=IvI<k

T - Z Z 204201427 -1 (<D§+’Y¢’(DV€§)(D53T¢)>

|6]<k—10<|y|<k—|d|
D AYD ) (DD, f))
(5.3.60b)

We will use Gronwall’s Lemma to extract information out of Equation (5.3.52);
for this we have to estimate

-
/ 0 XHd" = / / OuXH Ny d"pur ds
~//Zx2,x1,7 0 M12,1173-r><{7'}

2/ / O XH (1) d"pr ds . (5.3.61)
0 M12,1173‘r

IN

More precisely, we will estimate

/ 0, X" () d"y (5.3.62)
Mmz,x1—37'
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Whenever no confusion is possible, we will write s and G, for 7 (Mg, 2, —3-)
and G (Mg, 2,—3-). The most delicate term to estimate is fMIerT Ty d" .
We will estimate it in two ways, the first will give (5.3.48), the second (5.3.49).
We start with the second term in Equation (5.3.60b), we denote I5,, the generic
term in the sum. We have (recall that €] = e]):

= [ a DI (), 4 (D (1) (D0 f(7) e
x9,r1—3T
< af 20T IR (DY f(7), A(D ey (1)) (D0, £ (7)))d" 1o
MQZCQ r1—3T

) (1) gy ar

x9,x1—3T

< Gl AN,

x9,x1—3T

) Han(T) H%a:ll (Miz,mf?n—)
ol Ollggar, )
< C(Co,Co Corr, 0, O (M) Lot 00y, o) (100 O rera, o

100 F () 41y ) ) -

lea () o,

We have made these estimates first on Méz’m_:ﬁ because the e; are not defined

globally in general; summing over ¢ we obtain an estimate on Mg, ;, 3,

[ e ), 4D () (D0 ()
Mag 2y -3+
< C(Ce, Ce, Cs, w1, a, )| (1) Lo (1107 F (1) o1 + 1107 F (T) | 55)

< O(Ce, Ce.Ca, €% Corar s () e (£l + 10-F ()i + IF D] pomrr2)

IN

O(Cur s, Ca, €, Cu 1,0 (10 + 10 £ + PP s )

in the second inequality (5.3.25) has been used. The first term in 7 can be
estimated similarly leading to

/ T-(1) d" -
M:tg,acl—ST

< CO(Ce, Ce, CICA, C%, Oy, 1, 0 €) (Hf(T)Hijf + 1107 f ()l

+ la(P)|2pa + |[b(T 2a, )
[la ()15, II()H% 1/2

(5.3.63)
Let us now give an other estimate of 1. We write
Is, = 1y+1y,
with
Lo = [ e e (), 4 (D (7)) (D0, 6(r))

0
r9,x1—3T
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Iy = @ 2T DI f (1), AU (DYl (7)) (D0, p(7))) d”pir

i
Mz2,z1737'

I4 can be estimated as follows

C(C) (1A% a2 1070l oot + A% | sg1+2 1070 ll ) | 1] e
< C(C§7 Cé,CA,Ca,CS,.CEl,Oé, 6)(”.]0”2%7:‘ + ”aH?}f}C"‘ + Hb”iﬁf—lﬂ)

Iy

IN

where we have used
1876l 1 < (18-l 5 (5.3.64)

with [|0-¢||4e estimated through Lemma 5.3.5. For I, one writes similarly
Ly < CCHIf e (A% 1001 o + (A€ 1|07l 1) -
To estimate 0;1), ones uses (5.3.34) to obtain
0l 1 < C(Co,CorC% Cayirs, ) (0abl 1 + Il + 1 Flls)
which gives using (5.3.25)

qu < C(Ca Céaca7CAvcsal'lvaa€) X
(£ 1360 + 12821200 + llal5ee + Hb”ifka—l/z) -

To sum up, one has obtained

IS CCn 00" Ca Currond) (€5 + e + 10 )
Finally, estimating similarly the others terms in 7', one obtains

I S O(C 0 CnCounriand) (€5 + ol + 1 1)

(5.3.65)

Next,

/ Ni(7) sy < 26120+ LGOI, v (5.3.66)
M, k

2,21 —3T

To estimate S, we use the field equation and write

. S dn,UfT
M;2,z1737
. | Z a7 20201 DB DO Af 4+ F)) dpu,
Mgy o) —sr 18|<k
- Z 2042811 <<D5¢7Dﬁa) + (D%, D)

M;Q,zl—?,‘r ‘ﬁ|§k-
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— (D°£.D(Af)) d"pr

= / > <—|2a+1|cl$2““”’1@%,@%
M?

x9,x1—3T ‘IB|S]§ 202
2c
L2
|2a + 1]y

N Z 20261 -1 ((Dﬁ¢7pﬁ¢> + <Dﬁa,Dﬁa>) d"ur

7
M12,1173‘r ‘ﬁ|§k

x 204261 (DB, D%) d" iy

+C2C(k)||f||;f;g(M;‘2,zl_3T)HAfH%;g(MiZ

T ,11—37‘)
12a + 1|y 2c3

2 2 2
—_ ——|b _ o
— 2 ||¢||%a+1/2(Mm2,x1—37) |20[ _|_ 1|Cl H H%‘l 1/2(M302,x1—37') + 02||¢||%k (M12711737')
2
teallalZpaar,, o ory + C(Ce, O, Cos D Allgoass, o, s 1 P, o s -

which gives

[ S0 @ < O Co CbAM lgpiaty - By
T9,Tr1—3T
H2a + 1|62 erasa + ClCor Cr Co ) I s
£C(Car Ca, C) ([0l s + 160 360)

Similarly one derives
| T @ < ath o e, . -
T9,r1—3T

The remaining estimate of the term in G is straightforward since all the I'’s are
in L* (5.3.13):

/M G(r) d"pr < 2CR)CE ()2 (5.3.67)
x9,r] —3T

Therefore, using Equation (5.3.66) to get rid of the term [|¢]| o
k

+1/2(Ma:2,9:1—3'r)

present in the estimation of [}, S(7) d" - one obtains from (5.3.63)
D)

;o1 —3T
| exraw <
v//lrz,zl,ﬂ'
/ C(Cé7057 Cg,CF,CA,Ca,CS,ﬁl,O[, k)
0
x (1520 + 195 £ ()%
+ lla(s) 1% + ||b<s>||;ka_m) ds .

Equation (5.3.52) implies (5.3.48). The inequality (5.3.49) follows from (5.3.48)
and (5.3.38). Then (5.3.50) follows from the above using estimate (5.3.65) and
Lemma 5.3.5, ¢f. (5.3.39).
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To extend the result to f(0) € H ,lfoc, consider any sequence f,(0) € H }C"fl
converging to f(0) in 4. The estimate (5.3.48) applies to the f,,’s; Gronwall’s
Lemma applied to this estimate shows that all the objects appearing there
remain finite when passing to the limit n — oo, and that (5.3.48) applies to
f. A similar argument works for (5.3.49)-(5.3.50) — here a straightforward
generalisation of Lemma 3.6.2 should be used instead of Gronwall’s Lemma. O
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5.4 Energy inequality for the Einstein Equations.

The aim of this section is to provide weighted energy estimates for the conformal
system derived from the Finstein equations in Section 4.3.3.

We start with the space-time constructed in Section 4.3.3. The hypotheses
(5.2.2),(5.2.5), (5.2.6), (5.2.12), (5.2.13)-(5.2.15) are satisfied by our choices of
Gauge. We will address the boost-strap hypotheses on the weighted norms of
the tetrad fields such as (5.2.1) and (5.2.8) in the next paragraph. Let us define
T(xg) by

T(x9) = max{t | Myy 4+ C M} (5.4.1)

where A, z, + is understood as the set of the null geodesics s(7) starting from
Yrsa1s T'(x2) being determined by the time of existence of the geodesics s(7).
The Friedrich conformal system equivalent to the Einstein equations takes the
form explicited in Section 4.3.3 on A, ¢ for 0 < t < T(xg), which will
allows us to obtain the weighted estimates on various fields. We will use the
notations of Chapter 4, with g = 22§, I';//}, being the connection coefficient of
D with the decomposition (4.1.14), (without hat), ,ﬁ,a p,a, 3,a being the
null components of the rescaled Weyl tensor d;ji = 2~ szkl, where Wiy, is
the Weyl tensor associated to ¢; the indices correspond to the half-null tetrad
constructed above.
Then we set

Lle(z, v, 1) = Tobe(z,v?,0), (5.4.2)
Dsbo(z, v, 7) = T3l (x,04,0), (5.4.3)
Tl. = Dl —TJb., (5.4.4)
Ts’e = Tl T3’ (5.4.5)

We will consider the following sets of variables (we recall that indices a, b, ¢ run
from 1 to 2):

A o= a7t (ef, e e el (5.4.6a)
fo = (fl%ff nx Ca,ﬂflxab,x’lfabc,w’lfgbc,xaﬂga,éa) :
(5.4.6b)
fs = (%b,ﬁa,,ﬂ?»@ﬁa) ; (5.4.6¢)
3 (Qabs Bar py0) (5.4.6d)
fo = x(aw,B,) (5.4.6¢)
fo= (fi.fa, f3, f1) (5.4.6f)
f: = (f, fz,f37f4) (5.4.6g)
fo= (T s%) . (5.4.6h)

Remark: The component 3 is present both in f5, fg because it will be estimated
in 4% and in %’f‘*l. In fi we have put the components of the rescaled Weyl
tensor which can be estimated in L*, so that f’ contains all the fields of f
which will be bounded in our boot-strap setting.
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The ordinary differential equations of Section 4.3.3 are rewritten in a form
adapted to (5.4.6). For (4.3.47) one writes

Or(z7'e}) = —2(z'w) —2x(z" ") (z 7 el), (5.4.7a)
Or(x7'eg) = =20 ")) +a(aE))) (5.4.7b)
Or(a™ler) = (¢7'¢) —a(eTxa) (@ e]) (5.4.7¢)
o-(z7ed) = —(@ WD) + x(a71E))) . (5.4.7d)
The system (4.3.51) is rewritten as

Oz ") = =2z xae) (27 XDP) — (5.4.8a)
87Xab = —x(z x.° )Xe b4 2pd® + xoet + 227 xab) L (5.4.8b)
O-(x71¢) = —x(z X)) (@) — Ba, (5.4.8¢)
8T§a = —x(aflnc)&a + 227, — xﬁa , (5.4.8d)
Or(z™ ) = —z(@ ') (@ Xea) = Ba (5.4.8¢)
Oz 'w) = @@ ) () +p, (5.4.8f)

0r (27 'To%) = —(@ 'xa) T’ — 2@ X" (@7 ' Td"e) + €6cBa
(5.4.8g)

O-(x7'Ts%) = —20.%(a"'n°) — 22(z7'T.%) (2™ 1n°) — 20e%, .
(5.4.8h)
(5.4.81)

For f1, fo, our conformal system can be summed up in an evolution equation
of the kind

Or(fiof2) = Qo((f1, fo), f) +2Qi(f, f') + Lof’ (5.4.9)

with Qp, Q1 bilinear forms in RY with constant coefficients, and Ly — a matrix
with constant coefficients.

On the other hand the Bianchi equations (4.3.56)-(4.3.59) can be writtend
as
es- (Tag) +eq - (26,) +ep- (28,) — g%e,. - (z6°)
_(facb + fbca - f‘ddc)(ﬂﬁﬁ )
= w2 (Ta% + T — Ta™)(@B,) - *Cﬂtr@ ) (wag)
—37(X,,P — X0
+r(27 1) (28,) + a(a7 Q) (28,) — wgap(a™ ) (@), (5.4.10a)
es (20,) + ec - (wafa) + ([fa — Tea) (waq) — Ts%a(z3)
= —z x_l(fcca — fcda)a:gcd +x x_lfgcaxgc
2try(2B,) — 2a(aw)(5h,) — (way,) (5 bne — 2071¢7)
+2za(x)’B, +3z(=€ p+ *gaa) +28 , (5.4.10b)

64'ga+€a'p*€ ey o
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= 2x-f—a ltrxaf, (5.4.11a)

e3- 0 4 e, - B, + ed’FaaCQb

Ci —17 a 1 —1= 3
= —zeP(z7IT, )8, — 5(3: %) Hza) - §trza

w

—2¢ - *6 4 2z ¢ — 207 1) - B - gpa(x) : (5.4.11b)
€3 p+eq- éa + ICL‘aacéC

= —m(aflf@ac)gc - ;trxp - 1@71?) - (za)

2
+x(z ¢ — 227 n) - B+26- B+ ga(z)a , (5.4.11¢)
€4 p—eq- B —To"B
= z(z7'T,%) 8¢ — ;xtr(aflx)p — %X cata27iC (2B), (5.4.12a)

€40 + €4 ‘*/Ba +f\aac* c
X-a—z7 ¢ (278), (5.4.12b)

| =

= 3
= —zT,%(z*6%) — §ajtr(:n_lx)a +

€3 Ba—eap—ciep o0 —T3%0
= 2(z7'T3%)6, — trx 3 + 2z(x1y) - B+ 22 w(z3)
+3z(z 7 np + 27 o) + §-a—a(x)B, (5.4.12¢)
€1 fa—ep-a’y — Tylealy + Tlaal,
= (a7 ' Ty e’ — 27 ' Ty a’) — 2trx3
2z (710 + 2za(z7 ) Ba (5.4.13a)
e3Qab — €a - By — €b - Ba + g% - (B°)
~T3%aqe — D3%aep + (Lo + 1% — T4%) B,
= z o ' (Tg% = To% — Tp%) 6 + 2(2 ' T5%) aae — 2(27 ' T5% ) e

1 B 1
_§trXO‘ab +4x(x 1£)aab - ia(X)*aab

—3z(x Xapp + 2 NX0) + (4N + 271 R - (5.4.13b)

Let us note that we have written ey - (z3) = wey - B — 23 to obtain the last
equation of (5.4.11). Each of the subsystems (5.4.10),(5.4.11),(5.4.12) can be
put in the form

Orp+ A0+ Buid+ Bt = (Qof . f) +2(Qsf', f),  (54.14)
e3-p+ 'A% b+ B+ Boap = (Quf', ) +2(Qsf )+ Laf,

(5.4.15)

with the B;; arising from those terms in (5.4.10)-(5.4.13) that contains the I's,

and can be written as

Bij = Bi;(f) - (5.4.16)

The matrices Q2, Q3, Q4, Q5 have constant coefficients; BZ{J- is linear in f , again
with constant coefficients; all the coefficients take values in

{1,2,3,4,—1,-2,-3,-4,1/2,-1/2,3/2,-3/2,0} .
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Now let us give some details how (5.4.10)-(5.4.13) can be put in the form
(5.4.14)-(5.4.15) and satisfy the hypotheses H0)-H3), p. 111. For (5.4.10) one
sets

¢ = ( iﬁi > = (zay,) | (5.4.17)
Y = <i§;> : (5.4.18)

Then, in the notation of (5.3.8) the A’ are given by (4.4.3) so that H1)-H?2)
hold. Condition H0) holds by (4.4.6). Equation (4.4.10) shows that H3) holds.
Using that last equation together with (4.3.49) one can read off the coefficients
appearing in (5.3.11):

T3¢)a = (T378)a

= (—£+%trx)x§a—f‘3“bﬁb, (5.4.19a)
(M30)a = (I32P)q

= %nbxgab, (5.4.19b)
(Ta4d)ay = (LFaza)ap

= %trx:vgab, (5.4.19¢)
Cy)a = (Fy2p)a

=0, (5.4.19d)
TY)a = TzB)ab

— _A’eabdrecdxgc, (5.4.19¢)

(F,¢)a = (F/$Q)a
= A/gcdihcehdfhai(r‘ghexghf + thfiﬁghe) . (5419f)

(recall that hy, = 60 denotes the metric induced by g on Vect{e,}; the matrices
A’ = (A""4:°) have been defined in Equation (5.3.8a), and can be read off from
Equation (4.4.3) — they have constant coefficients in {1, —1}).

For (5.4.13) one sets

¢ = <gi ) : (5.4.20)
v = < 31; ) = (ag) - (5.4.21)

In the notation of (5.3.8) the A’ are given by obvious renamings and permu-
tations of (4.4.3). The (a, 3) equivalent of 4.4.6 gives H0). From the («, )
version of (4.4.10) and from (4.3.49), one can read off the coefficients appearing
in (5.3.11):

(F4¢)a = (F4ﬂ)a
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1

= Stxba, (5.4.22a)
(Th0)a = (T40)a

= %%@, (5.4.22b)
(T39)a = (I'30)ap

= (%trx—g)aab, (5.4.22¢)
(g@ab - (Fgﬁ)ab

= 0, (5.4.22d)
TPy = (I'B)ab

= _A,eabdrechCa (5.4.226)
TY)a = (Ta)a

= A hRY hoi (Tl eans + Ty poune) - (5.4.22f)

Here the matrices A’ = (A’%,.¢) are the same as in Equation (5.4.19f), and
thus again have constant coefficients in {1, —1}.
For (5.4.12), one sets

¢ = ( 5 ) ;o v =1(8a) - (5.4.23)

Then the A; are given by (4.4.11). The identity (4.4.13) ensures that HO) is
satisfied. The gamma’s can be read off from (4.4.15):

(F3¢)a = (F36)a
= T8+ (%UX — w)Ba, (5.4.24a)

o) = (r( 7))

= 0, (5.4.24b)

o - (1(2)

= 0, (5.4.24c)
(

—I'% ﬁc - ncﬁc
4.24
| P €Cdﬁd + ECdncﬁd ’ (5 d)

(5.4.24e)
For (5.4.11), one sets

o = (B,) (5.4.25)
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¢ = <§> . (5.4.26)

Again the A; are given by permutations of (4.4.11) and the gammas by the
((p,0), ) version of (4.4.15) :

B (F40)a = (Hﬁ)a

_ %trx@a, (5.4.27a)
ww = (ri(2))
~- 0, (5.4.27D)

o = (5(2)

(
T5¢)a = (T50)
0

= 0, (5.4.27¢)
('¢) = (I'B) (5.4.27d)

_ _Faac ﬁc - TICQC

= ( ra ECdﬁd n GCdﬁcﬁd ) , (5.4.27e)
(WJ)@ = <P( g )))a

= 0. (5.4.27f)

Proposition 5.4.1 Consider a field f, defined by Equation (5.4.6), arising from a
metric which solves the vacuum Einstein equation, such that f(7) € H,LOC(Mx27x1_3T)
for some k > 4, and such that the conclusions of Lemma 4.3.1 hold. Let T'(z2) be
given by (5.4.1), and let us define, for 0 <7 < T'(z2) and —1 < a < —1/2,

B (@2, 01,7) = (1 )Nt 41y ey + 11 22D 201y o0
oo OBk 01y, 1 FD OB 11y

Hedeaalfoar,, . ) - (5.4.28)
Suppose that
M (22, 21) = 2B (w2, 21,0) + 2| fllgo +1 < o0, (5.4.29)
and let T* (M, xo, x1, a, k, T(22)) > 0 be defined as
T* :=sup{0 < 7 < T(x2) |Vs € [0,7] Ef(x2,21,s) < M1} . (5.4.30)

Then there exists C1(Mj,x1,a, k) bounded over bounded sets of variables such
that, for 0 < 7 < T,

107 (fr, f2)(T)[Lee < Ci(My, 1) (5.4.31)
10-(f1, f2)(T)|loge = Ci(Ma,z1) (5.4.32)
(1 f2) (DMl < 1(f1, f2)(0)|| e + TCL(My, 1), (5.4.33)
[(Frs f2)(T)llzee < [[(f1, f2)(0)[| oo + 7CL(My, 21) . (5.4.34)
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Further there exist constants T5(My, z1, a, k) > 0, Co(M1, 21, a, k) such that, for
all 0 < 7 < min(T*,T3),
1(F3, FO( 360 + 1(ats Bas £, 7 200) (T [70 + 2050 (7) [ 200
< 2)(f3, f)O) 20 + ll(@abs Bas p 0, 2a0y)(0) |70 + 20500 (0)[[
+Co(My, 21, 0, k) (T 4 701 . (5.4.35)

PROOF: Inequality (5.4.31) follows immediately from (5.4.9), (5.4.32) is a direct
consequence of Equation (5.4.9) using the Moser inequality

1590 ot < Csll fill s llgllga < Callfill e llgl s - (5.4.36)

which is a straightforward consequence of (3.2.35). We estimate the right hand
side terms as

||Q0((f17f2)7f)H%a < C(QO)CsH(fhf2)||%°‘”f“g2
< 0(C) (Iths f2) e + 1£12)
< C(Co)ME,
[eQi(f, )lore < Clar,an Colf e
< C(z1,0,Cs)My

and similarly for Lo f’. Inequalities (5.4.33)-(5.4.34) follow from (5.4.31)-(5.4.32)
using the next lemma with b = 0 and ¢ = 0,(f1, f2):

Lemma 5.4.2 Let U : My, ,, x [0,T] — RY for some T'> 0 and 0 < x5 < 3,
satisfy the equation
0, U =bU + ¢, (5.4.37)

with b © My, 2y x [0,T] — End(RY), ¢ : My, ., — RY. Suppose U(0) €
Hi°®(My, +4) and b(7),c(1) € HP°(My, ) for 7 € [0,T]. If k > n/2, then U
satisfies the inequality

UM lze < 1U(0)[Lgge + C(Cs) /OT 16Cs)llgo U (s) e + lle(s) Lz ds

(5.4.38)
(recall that we use the symbol Cs for constants arising from Sobolev embedding
and the likes) and

U@L < [U0)]| L +/OT||5(8)||LO<>||U(8)|L°° + lle(s)] oo dg(5.4.39)

for all 7 € [0, t].

PROOF: Let € > 0, we note that U € C1([0, 7], Hi°(My, +,—3-)) (cf- Remark 2
after 3.3.1). We have

(10U as, oy + €)Y < 10U ()t a1y ) (5.4.40)
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similarly for the L* norm. Then, we deduce

T
IO (T 0 (Mag,ag) < IIU(U)H%;CLY(MZQ,ZS)JF/O 107U ()| st (Mo )5 5 (5-4-41)

Therefore, using Equation (5.4.37) and the Moser inequality (5.4.36),

IUDlge < U)o +/0 16U + ¢)(s)[| e ds (5.4.42)
< [[U(0)] e +/0 Csllo(s)llgo 1T e + lle(s) || e d65-4.43)
The L*° inequality is a corollary of Lemma 3.3.1. O

Let us turn our attention to the proof of inequality (5.4.35). We wish to
apply Proposition 5.3.6 to the systems (5.4.10)-(5.4.13), in order to do that we
need to verify the relevant hypotheses. We have already shown that (5.4.10)-
(5.4.13) can be rewritten in the from (5.4.14)-(5.4.15), with the hypotheses
HO0)-H3), pp. 111-112, being satisfied. We need, next, to verify that conditions
¢'1)-%¢3), p. 104-106, hold on Ay, 4, + for t < T'(z2) (taking t; =ty =t =1).
The definitions (5.4.28) and (5.4.30) show that Equation (5.2.1) holds with

e=14+a>0,

and
CE+ = M1 .

Equation (5.2.2) and Eq4.2.3 hold by hypothesis, ¢f. Lemma 4.3.1. From the
definition (5.4.29) of M; we have

l€allgo < M1, (5.4.44)

which gives (5.2.7), using the weighted Sobolev embedding (since & > 2) and
the fact that the €,(0)’s are defined on a compact set. Equation (5.2.8) follows
immediately from (5.4.29) with

Ce, = M , (5.4.45)

while (5.2.9) holds by construction. The estimates (5.4.31)-(5.4.32) give the
existence of C7 (M, x1,a) such that (5.2.25) is satisfied with e = 1 + a. We
have thus shown that conditions €'1)-¢'3) are satisfied.

Consider, next, Condition H4), p. 112. The map A of Equation (5.3.1)
corresponds to the matrices B;; in the system (5.4.14)-(5.4.15); those depend
linearly upon f (cf. Equation (5.4.16)), which gives the existence of a con-
stant C'4(M;) such that the inequality (5.3.12) is satisfied. Further the maps
I,T/,T3,T4 given by (5.4.19), (5.4.22), (5.4.24) and (5.4.27) are linear combi-
nations of f‘abc ,fg“b, .0, Ts%, and try, try,w, which gives

(T, I, T3, Ty ) || e C(Cs 1) (I fllgp + [lf2ll o)

<
S C(CSa'xl)Ml 3
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hence (5.3.13) is satisfied. It follows that all the hypotheses H1)-H4) are satis-
fied as well, and Proposition 5.3.6 applies — the source terms a and b there are
now the non-linear terms appearing in the right-hand side of (5.4.14)-(5.4.15).
Letting @ stand for one of the Q2, @3, Q4, @5, we estimate the corresponding
contribution as

IR f)(llsee < c(CHUL (Dl (7))

< C(Cs, M), (5.4.46a)
l2QU (Dl < c(COIF ()l llwf (7)o

< Clen )l (Mg lf (7)o

S C(Ml,xl, ) (5.4.46b)

The estimate 5.3.36 of Lemma 5.3.5 applied to each of the systems (5.4.10)-
(5.4.13) written in the form (5.4.14)-(5.4.15), gives

10-(Bas (p,0), B,y 2 (T) | ge < C(My, 1,0, k) . (5.4.47)

Proposition 5.3.6 applied to (5.4.10) gives the existence of a time 77 > 0 depend-
ing only upon M, such that the estimate (5.3.49) holds for 0 < 7 < min(7*,7T1):

cr(llze()3ge + 128(T) 1 540) + l2B(T)| 7
< alllza0)34 + [280)I3¢) + |28(0)|7~

/CMl,xl, V(14 (7 — $)°) ds .

We have also used Lemma 5.3.3 and Equations (5.4.46); further, Equation (5.4.47)
has been taken into account to control the 7-derivative terms appearing at
the right-hand-side of (5.3.49). The inequality (5.3.49) applied to (5.4.11) and
(5.4.12) leads to a similar inequality involving [|8[| sz, [|(p, o[22, [[(p, o) o<,
18]l e and [|B||p. Note that (5.3.49) is not of any use for (5.4.13), because
we have no estimate on d.«. We use Equation (5.3.50) instead, which gives

llvan ()30 + llevas(T) 200 + |28z e (T) |7 + [18a(7) | 30
< laas(0) 130 + lleas(0)[[Zoe + 120z0ab(0) [ Zo0 + 150 (0) ]3¢
+C(My,x1, e)/ (1+ (1 —9)%) ds.
0
The term involving [|b[|4e at the right-hand-side of Equation (5.3.50) has been
estimated using (5.4.46) and the weighted Sobolev embedding.

To finish the proof of (5.4.35) we need an inequality involving ||z fe. In
order to obtain an estimate for this quantity we rewrite Equation (5.4.10a) as

Oragy, = —{ea-(B) +ev-(B,) — g% (89 — (Ta% + 1o’ — Ta®)(8,)}
Jr(Facb + Fbca — Fddc)éc - %tr(X)Qab
=3(X,,P — X,,0) + CaBo + CoBa — garCeB” - (5.4.48)
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Terms such as e, - (3 are estimated as follows:

leg 048, llwg + llezdr B, llzs
C(Ce)HﬁHcgla + C€||a7'ﬁ||<goa—l ,

Hea'ng(gg‘ <
<

where the last term can be estimated with Lemma 5.3.5 applied to (5.4.11).
The terms containing p and o are estimated using the fact that
()L < v/ My,
similarly for o. Handling the remaining terms in a similar way one is led to
10r@apllge < C(Mi,z1,0) , (5.4.49)
which obviously implies
10 (zagy)|lLe < C(Mi, 21, 0) . (5.4.50)
Integrating in 7 one thus has the desired inequality
1z ()7 < ll2ae(0)| 7 + 7O (Mi,21,) - (5.4.51)
Summing all the estimates gives (5.4.35). O

Choosing Ty sufficiently small so that all the expressions at the left-hand-
sides of the inequalities of Proposition 5.4.1 are smaller than some multiple of
their initial values, one obtains the main result of this section:

Theorem 5.4.3 Let 0 < x5 < z1/2 and k > 4. Let fi, fo, f3,f4,f be defined on
Moy o, ¢ Torany 0 <t < T(z2) as in (5.4.6), and satisfy Equations (5.4.7)-(5.4.8)
and (5.4.10)-(5.4.13) there. Suppose that the conclusions of Lemma 4.3.1 hold,
and that there exists —1 < a < —1/2 such that

My = [[FO)lsges.,) + I1FO)lgyes, ) + 17Oz,
+Hx8maab(0)|]mo(gl) < 400. (5.4.52)
Then there exists Ty(My,z1,k,«) and C(My,x1,a, k), independent of T'(z2)

(where T'(x2) is defined before Equation (5.4.1)), such that for any 0 < 7 <
min(7'(x2),Ty), we have for any o > 0,

1 (o2 (Mo, —50) + I (D220 (0 g —57) + 12000 (T) 220 (0 1y —5)
< C(Mo,xl,a, k‘) (5453)
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5.5 Local existence theorem for the Einstein equa-
tions in weighted spaces.

We want to show that there exists a development of initial data on X which
contains .#y ,, 7 for some T'; this claim follows essentially from the estimate of
Theorem 5.4.3. The result is, however, not completely obvious, because that
estimate applies only to the system of equations considered there, which has
been derived as a subset of the set of Equations (4.3.1); while those equations
are equivalent to the vacuum Einstein equations, Equations (5.4.7)-(5.4.8) and
(5.4.10)-(5.4.13) are not. Now, it is standard to show that the estimate (5.4.53)
implies existence of solutions of the reduced set (5.4.7)-(5.4.8) and (5.4.10)-
(5.4.13) on a set containing .#p 4, 7. for some 7., however it could turn out
that the solution so obtained does not satisfy the vacuum FEinstein equations
everywhere. The fact that this does not happen would follow if one showed, for
appropriate initial data, that all the equations (4.3.1) hold when the reduced
ones do. A proof along those lines would involve quite heavy calculations. We
shall instead present a general abstract argument which avoids those.

Before proceeding further it is useful to recall a convenient form of the local
existence theorem for Einstein’s equations. By definition, vacuum initial data
are defined as the triple (I, Eij, [?ij), where Eij is a Riemannian metric on a
manifold N, IN(Z-]- is a symmetric tensor field on N, and (ﬁij,f(ij) satisfy the
vacuum constraint equations:

D; (IN(”' — Eijﬁklﬁkl) =0,
R(h) = hIRM (K Ky — KijKp) -

Here D is the covariant derivative of , and R(h) is the curvature scalar thereof.
An imbedding i of N into a space-time (#,g) is said to be compatible with
the initial data (iNzij, I?Z]) on N if the pull-back i*g of the space-time metric g
on .# coincides with ﬁij, while INQJ- is the pull-back of the extrinsic curvature
tensor of i(NV).

We use the symbol h to denote some arbitrarily chosen smooth background
Riemannian metric, which is introduced for notational convenience only; D
denotes the covariant derivative of the metric h. L2(N, duj) is the L? space
defined with respect to the canonical measure dy; of the metric h. An n di-
mensional manifold M with topological boundary M is said to be a smooth
manifold with boundary with corner at S if OM is the union of smooth n — 1 di-
mensional manifolds with boundaries which intersect transversally at a smooth
n — 2 dimensional manifold S. A generator of a null hypersurface J# is a null
geodesic segment contained in J7.

Theorem 5.5.1 Let IV be a three dimensional compact manifold with boundary
with a smooth metric h, let Cp > 0 and suppose that the vacuum initial data
(hij,KZ'j) satisfy

Z ||DihmnHL2(N,du;L) + Z ||DiKmn||L2(N,du;L) < Co, (5.5.1)
0<i<l+1 0<i<y
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with some ¢ > 5/2. Then:

1. There exists a constant ¢ > 0 depending only upon N, h, and Cy, and
a vacuum globally hyperbolic Lorentzian development (‘//(N,E,f{)’g) of the
initial data with smooth null boundary 8//1( with corner at N, and
with the following properties:

N,h,K)

(a) Every future directed timelike geodesic y(s) normal to N at s = 0 can
be defined for proper time parameter s ranging over [0, €], except when

Y meets 8//1(1\,’7%?() at some s smaller than ¢; similarly for past directed
timelike geodesics.

(b) Every generator v(s) of 8//!(]\[’%71;() with v(0) € ON is defined for

affine parameter s ranging over [0,¢€]; here s is normalised so that
|g(7(0),n)| = 1, where n is the field of unit normals to N.

2. Let (#,g) be a C* maximal globally hyperbolic vacuum space-time and
suppose that there exists an embedding i : N — .#, compatible with the
initial data, with i(N) — achronal. Then there exists an isometric embedding

of the interior of e//(Nﬁjg) into .# extending i.

Remark: The hypothesis that (.#,q) is C* in point 2 can be considerably

relaxed, and is made only for simplicity of presentation.

PRrROOF: Point 1 is established by solving on R x N the equations obtained by
reducing the vacuum Einstein equations using the background metric h:

nga:“ = D;Lx‘u , iL = —dt? + ;L R (552)

where Oy denotes the d’Alembertian of a metric k. Under (5.5.2) the Einstein
equations become a set of hyperbolic wave equations for the metric coefficients

g = g(dzt,dz") .

The initial conditions at ¢t = 0 are derived from the initial data (ﬁij, I?ZJ) in the
usual way, and one further impose the boundary conditions

G (t, ) = gu(t,z) onR x ON .

Here g, (t,z) on R x ON is any Lorentzian metric chosen so that the corner
conditions on {0} x ON are satisfied. Standard theory of hyperbolic PDE’s
provides a solution g of that problem defined on (—7,7) x N, for some T
which depends only upon N, fDL, and the constant Cj of (5.5.1). The metric g
will not be vacuum on (—=7,7) x N in general; however, the obstruction for
g to be vacuum is governed by a vector field which satisfies a wave equation,
the characteristics of which are the light cones of ¢; this implies that g will
be vacuum in the domain of dependence Z(N) of N in (=7,T) x N. Z(N)
with the metric obtained from that on (—7,T) x N by restriction provides the
required vacuum manifold (//l( N f(),”gv) (with a boundary which has a corner

at ON). Point 2 is Proposition 2.4 of [17]. O

We are ready now to pass to the proof of our main theorem:
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Theorem 5.5.2 Consider vacuum hyperboloidal initial data (M, ﬁij,kij) with

WK =3,
oM
and suppose that the conclusions of Lemma 4.3.1 hold. Let (.#,q) be the maximal
globally hyperbolic vacuum development thereof, let X,, be the subset of ¥ = M
defined in Lemma 4.3.1, and assume that the fields (5.4.6) satisfy along X,

1FO) |0 (20,) + £ O)llgpcss,, ) + 1020an(0) g () < +00, k> 6. (5.5.3)

Then there exists T, > 0 and an isometric embedding of .#j ., 7, into .#Z. In
particular there exists a conformal completion of .Z with

It 50,1, x §%.

Remark: The differentiability condition k£ > 6 arises from the requirements of
point 2 of Theorem 5.5.1. The analytical considerations in this work lead to the
restriction k£ > 4, and we believe that this restriction should be sufficient for
our arguments to go through. This requires a reexamination of Theorem 5.5.1,
which we plan to do in a near future.

PROOF: Local existence theorem such that 5.5.1 with the construction of the
beginning of Section 5.4 ensures that, for any 0 < z9 < x1/2, there exists some
t > 0, a vacuum metric on .4y, »,+, and an isometric embedding 7, 5, ¢+ of
My 34 into A which is compatible with the initial data and we can identify
My 2,4 With a subset of .. In what follows we will always use this identifica-
tion; iz, 4,.¢ is then the identity map. As in Section 5.4, let us define

T(x9) = sup{t | Myy ot C A},

from what has been said we have T'(xz2) > 0 for all x5 > 0. In order to prove
Theorem 5.5.2 we will show that

T($2) Z T* = T4 5 (554)

where the time T} is given by Theorem 5.4.3. We shall need the following
results:

Lemma 5.5.3 In z, 7—adapted coordinates we have, for all 7 € [0, t(x2)),

IEa()llg- < Clava | flgg B (a2.m1.7)) . (5.55)
losy(llg2 < Clar.on | flgg Bf (z2.21,7)) . (5.56)
)

[P0 (Dll g1 + 107 nullg—1 < Clar, o || fllgy, Bi (22, 1,7)) , (5.5.7)

for some constants depending upon the variables listed, with E}* defined in (5.4.28),

fi,, = " 'n, — the g-unit normal to i, 4, (M), T,,*,, — the Christoffel symbols
of g. Further there exist constants 0 < ¢; < ¢o depending upon x1, «, the initial

data and Ej(x2,x1,7) such that

c1(21)h5(0) < hgy (7) < ea(@1)hiy (0) - (5.5.8)
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PRrOOF: Because of the relation
Ty =Ty + S(a™ dw),"y (5.5.9)
in order to establish (5.5.5) it suffices to show that

”Fuyﬂ”ggl S C(El?(x%xlﬂ');xl) . (5510)
The definitions T'),", = dz¥(Vy,0y) and T/, = 07(V,,e;) lead to
D’y =Tl 0, 0y¢5 + (9,09 . (5.5.11)

From Lemma 5.2.3 we obtain
H%(T)Hgg < C(E (w2, 21,7)) , (5.5.12)

similarly for &r%, which gives an estimate in G, L for 3:,392. The estimate
(5.5.10) immediately follows. In order to prove (5.5.8) one writes

ny = tgun’, (5.5.13)

and the result follows by Lemma 5.2.5, ¢f. Equation (5.2.45). O

Corollary 5.5.4 In a x,7 compatible coordinates system (2°) = (z,v4), The
extrinsinc curvature form K, of the level sets of 7 in (A, 4, ¢, g) satisfies

1Ko llg2(0t,y 0,y S Ol B (w2, 21,7)) - (5.5.14)

PROOF: Let
[?py = @,uﬁu (5515)
= Oum, — D7, . (5.5.16)

In an x, 7 compatible coordinate system the extrinsic curvature tensor IN(M is a
submatrix of K, (recall that we use a convention in which (2°) = (x,v4) and

(") = (x,v,7)). The result follows from Lemma 5.5.3. O

Lemma 5.5.5 There exists a constant C, such that for every t < min(7'(z2), T%)
we have on Ay, 41t
—Cy, < g7 < —1/Cy, , (5.5.17)

VX €T Myyz s satisfying dr(X) =0 we have
h(X,X)/Cry < §(X, X) < Coyh(X,X), (5.5.18)
Z Hﬁiﬁmn(T)HLQ(N) + Z Hﬁikmn(T)”LQ(N,du;L) < Coy s (5.5.19)
0<i<k 0<i<k

where Ty, (1) and K, (1) are the metric and the extrinsic curvature of the level
sets of 7 in Myy 41,0, With N = My, 2, 3.
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Remark: Unlike most of the constants in our work, the constant C,, depends
upon z2; however, the key point of Lemma 5.5.5 is that the bounds in (5.5.17)
and (5.5.19) are t-independent in the specified range of t’s.

PRrROOF: This is a direct consequence of Lemma 5.5.3 and Corollary 5.5.4. O
Let us return to the proof of Theorem 5.5.2. Let
0<s<T(x9), (5.5.20)
by definition of T'(x3) we have
{r=s29<x<m—3s} C .M,

and compactness of the set {7 = s,z = x2} implies that there exists d(z2) > 0
such that
{r=s,20—0(x2) <z <m1 —3s} C.A .

Replacing 6(x2) by x2/2 if necessary we may without loss of generality assume
that
0< 5(:62) < .CEQ/Q .

Global hyperbolicity of .# implies then that

'//:pg—é(xg),wl,t C ’% .

Consider the family of initial data (h;(s), Kij(s)) induced by the metric § on
A on the family of hypersurfaces

{r=s,20—0(x2) <z <z —-37} C .M

parameterized by 0 < s < T'(z2); by part 1 of Theorem 5.5.1 there exists a
metric, vacuum development of the initial data, defined on a manifold
%(S) = '%({T:s,zg—&(:vz)gxgml—35},;”]- (s),f(ij (s))

with the properties spelled-out there. Point 2 of Theorem 5.5.2 shows that
A (s) can be isometrically embedded in .Z. If s satisfies (5.5.20) and if

T(ZCQ) <T,,

it follows from Lemma 5.5.5 that the null generators of the hypersurfaces x =
const starting from any point p € {7 = s,x9 — d(x2) < x2} can be extended
a uniform (s-independent) affine time € to the future within .#(s), where the
affine parameter is normalized as in the statement of Theorem 5.5.1. This
implies, for s close enough to T'(x2), that the hypersurface

{1 ="T(22),20 <z <21 — 3T (22)}

will be included in .Z(s), hence in .#. This is compatible with maximality of
T'(x2) only if Equation (5.5.4) holds, and the theorem is established. O
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Chapter 6

Concluding remarks

We close this work with some concluding remarks.

First, all the results in Chapter 3, concerning non-linear wave equations,
have been formulated on a Minkowski background. It is clear that these results
generalise without any difficulties to a large class of space-times with a smooth
or polyhomogeneous Scri. The proof of such a fact would require checking that
all the arguments used go through in a conveniently chosen coordinate system
in a neighbourhood of .# . We are confident that this can be done and leave
such results to interested readers.

Next, so far we have established polyhomogeneity of solutions of the wave
map equation only in dimensions larger than or equal to three. We are planning
to extend this result to dimension two in a near future; we believe that there
is no difficulty in doing that if corner conditions are imposed on all orders.
However, we hope to obtain a result where at most a finite number of such
conditions would be needed.

We note that the polyhomogeneity results presented in Chapter 3 require
an infinite number of corner conditions. This is not necessary, this result will
be proved elsewhere.

Our results concerning Einstein equations are unsatisfactory in several re-
spects. First, we had to assume that the conclusions of Lemma 4.3.1 hold.
We have justified this fact only for initial data with a three-dimensional metric
with sufficiently high degree of differentiability, together with a restriction on
the trace of the extrinsic curvature. There is little doubt that those restric-
tions are not necessary, and we expect to be able to remove them soon. We
note, however, that those conditions still allow initial data which are not cov-
ered by Friedrich’s results, because they do not exclude the possibility that the
conformally rescaled Weyl tensor is non-zero on the conformal boundary, cf.
[1,2].

Next, a full understanding of the gravitational problem requires checking
the compatibility of the hypotheses of Theorem 5.5.2 with the properties of the
initial data which can be constructed by various methods, e.g. the conformal
method. This should be straightforward using the results and methods of [3],
but requires lengthy and tedious calculations which have not been carried out
so far. This question clearly deserves further investigations.
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Finally, one would like to show that polyhomogeneous initial data sets for
vacuum Einstein equations lead to space-time with a polyhomogeneous confor-
mal completion. We believe that the methods of Chapter 3 can be adapted to
prove such a result, but a detailed analysis of this question remains to be done.
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Miscellaneous
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A.1 Conformal connections.

We consider a space-time (.#, g) with the Levi-Civita connection D. Now, we
consider for a conformal factor Q the metric g = Q2§ and its Levi Civita con-
nection D. Let b a one form over (., g) and D the weyl connection associated
by D = D + S(b).

We have
D = D+S(Q7d0), (A.1.1)
D = D+5(0), (A.1.2)
D D+ 5(f), (A.1.3)

with f =b— Q7 1dQ. o
Let us denote respectively R;j, R'jr;, Rij, R'jii, Rij, R'jp the Ricci and
Riemann tensor associated to D, D, D. Following Friedrich we define

Lk 1A
— 199 Bwigii — 7Ry » (A.1.4)

o 1~
Lij = 5R)
! and so on for L and L. Note that since the product ¢f ® g only depends upon
the conformal class of the metric, the definition in (A.1.4) could have been done
with replacing glkRklgij by g”fR,dgij.
We have the following relations

A - ~ 1 )
Ljx = Ljx— Djb, + Qbis(b)j’k , (A.1.5)
Lix = Lji—Dj(Q  dpQ) + %Q*ldiQS(QfldQ)/k , (A.1.6)
~ 1 .

Ly, = Ljp—Djfp+ §fiS(f)jZk ) (A.1.7)

On the other hand, the Weyl tensors W of the different connections are the
same:

Wikt = Wi = W .

PrOOF: We will prove the first equation of (A.1.7), for the others are equivalent,
replacing b by f or by Q~1dQ. To simplify, we denote S for S(b), so that DxY =
DxY + S(X,Y) for any vectorfield X, Y. Let us note that S is symmetric. We
write

~

R(X,Y)Z = DxDyZ - DyDxZ— Dxy|Z,

= Dx(DyZ+S(Y,Z)) — Dy(DxZ + S(X, Z)) — Dixy\Z
-S([X,Y], 2),

= DxDyZ+ S(X,DyZ) + Dx(S(Y, Z)) + S(X, 8(Y, Z))
—DyDxZ —S(Y,DxZ) — (DyS(X, Z)) — S(Y,S(X, Z))
—Dixy)Z - S(X,Y],2),

'The tensor L;; defined in Equation (A.1.4) coincides with that in [28], and with the tensor
Ajij of [27, p. 138]; it equals Aj; of [29, Eq. (2.34), p. 96]
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= R(X,Y)Z+ (DxS)(Y,Z)+ S(DxY, Z) + S(X,S(Y, Z))
(@YS)( ) (VYX Z) S(Y,S(X,Z))*S([X,Y],Z),
= R(X,Y)Z+ (DxS)(Y,Z) — (DyS)(X, Z)

+S(X,8(Y,2)) = S(Y,5(X,2)) ,
where we have used

S(DxY,Z)—S(DyX,Z) - S([X,Y],Z) = S(DxY —DyX —[X,Y],Z).

= 0
With the indices convention
R0, = R(8;,0;)0 (A.1.8)
we deduce
Rlyj = Rlpj+2 <l~7[i5ﬂlk + Sml[iSj]mk> , (A.1.9)
Ri; = Rji+ Dybj — 3D;by, — Gk Dimb™ + 2bpbj — 2gbymb™ (A.1.10)
RFy = RFp—6(Dpb™ + bpb™) (A.1.11)

where the indices are moved with g. Therefore

) - 1
ij — ij = —Dkbj + §S(b)kljbl . (A.1.12)

a
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